
Gradual C0: Symbolic Execution for Gradual Verification

JENNA DIVINCENZO, Elmore Family School of Electrical and Computer Engineering, Purdue
University, West Lafayette, Indiana, USA
IAN MCCORMACK, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
CONRAD ZIMMERMAN, Northeastern University, Boston, Massachusetts, USA
HEMANT GOUNI, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
JACOB GORENBURG, Haverford College, Haverford, Pennsylvania, USA
JAN-PAUL RAMOS-DÁVILA, Cornell University, Ithaca, New York, USA
MONA ZHANG, Columbia University, New York, New York, USA
JOSHUA SUNSHINE, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
ÉRIC TANTER, Department of Computer Science, University of Chile, Santiago, Chile
JONATHAN ALDRICH, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Current static verification techniques such as separation logic support a wide range of programs. However,
such techniques only support complete and detailed specifications, which places an undue burden on users.
To solve this problem, prior work proposed gradual verification, which handles complete, partial, or missing
specifications by soundly combining static and dynamic checking. Gradual verification has also been extended
to programs that manipulate recursive, mutable data structures on the heap. Unfortunately, this extension
does not reward users with decreased dynamic checking as more specifications are written and more static
guarantees are made. In fact, all properties are checked dynamically regardless of any static guarantees.
Additionally, no full-fledged implementation of gradual verification exists so far, which prevents studying its
performance and applicability in practice.

We present Gradual C0, the first practicable gradual verifier for recursive heap data structures, which targets
C0, a safe subset of C designed for education. Static verifiers supporting separation logic or implicit dynamic
frames use symbolic execution for reasoning; so Gradual C0, which extends one such verifier, adopts symbolic

This material is based upon work supported by a Google PhD Fellowship award and the National Science Foundation under
Grant Nos. CCF-1901033, DGE1745016, and DGE2140739. É. Tanter is partially funded by the ANID FONDECYT Regular
Project 1190058 and the Millennium Science Initiative Program: code ICN17_002. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation, Google, ANID, or the Millennium Science Initiative.
Authors’ Contact Information: Jenna DiVincenzo (corresponding author), Elmore Family School of Electrical and Computer
Engineering, Purdue University, West Lafayette, Indiana, USA; e-mail: jennad@purdue.edu; Ian McCormack, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA; e-mail: icmccorm@cs.cmu.edu; Conrad Zimmerman, Northeastern
University, Boston, Massachusetts, USA; e-mail: zimmerman.co@northeastern.edu; Hemant Gouni, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA; e-mail: hsgouni@cs.cmu.edu; Jacob Gorenburg, Haverford College, Haverford,
Pennsylvania, USA; e-mail: jsgorenburg@gmail.com; Jan-Paul Ramos-Dávila, Cornell University, Ithaca, New York, USA;
e-mail: jvr34@cornell.edu; Mona Zhang, Columbia University, New York, New York, USA; e-mail: mz2781@columbia.edu;
Joshua Sunshine, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; e-mail: sunshine@cs.cmu.edu; Éric Tanter,
Department of Computer Science, University of Chile, Santiago, Chile; e-mail: etanter@dcc.uchile.cl; Jonathan Aldrich,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; e-mail: jonathan.aldrich@cs.cmu.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
ACM 1558-4593/2025/1-ART14
https://doi.org/10.1145/3704808

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.

HTTPS://ORCID.ORG/0000-0003-3029-2617
HTTPS://ORCID.ORG/0000-0001-6349-3402
HTTPS://ORCID.ORG/0009-0009-3961-3043
HTTPS://ORCID.ORG/0009-0009-3888-8440
HTTPS://ORCID.ORG/0009-0005-5957-7263
HTTPS://ORCID.ORG/0000-0003-1055-6785
HTTPS://ORCID.ORG/0009-0000-3709-9401
HTTPS://ORCID.ORG/0000-0002-9672-5297
HTTPS://ORCID.ORG/0000-0002-7359-890X
HTTPS://ORCID.ORG/0000-0003-0631-5591
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3704808


14:2 J. DiVincenzo et al.

execution at its core instead of the weakest liberal precondition approach used in prior work. Our approach
addresses technical challenges related to symbolic execution with imprecise specifications, heap ownership,
and branching in both program statements and specification formulas. We also deal with challenges related
to minimizing insertion of dynamic checks and extensibility to other programming languages beyond C0.
Finally, we provide the first empirical performance evaluation of a gradual verifier, and found that on average,
Gradual C0 decreases run-time overhead between 7.1 and 40.2% compared to the fully dynamic approach
used in prior work (for context, the worst cases for the approach by Wise et al. [2020] range from 0.1 to 4.5
seconds depending on the benchmark). Further, the worst-case scenarios for performance are predictable and
avoidable. This work paves the way towards evaluating gradual verification at scale.

CCS Concepts: • Theory of computation → Logic and verification; Automated reasoning; Hoare logic;
Separation logic;

Additional Key Words and Phrases: gradual verification, symbolic execution, implicit dynamic frames

ACM Reference format:
Jenna DiVincenzo, Ian McCormack, Conrad Zimmerman, Hemant Gouni, Jacob Gorenburg, Jan-Paul Ramos-
Dávila, Mona Zhang, Joshua Sunshine, Éric Tanter, and Jonathan Aldrich. 2025. Gradual C0: Symbolic Execution
for Gradual Verification. ACM Trans. Program. Lang. Syst. 46, 4, Article 14 (January 2025), 57 pages.
https://doi.org/10.1145/3704808

1 Introduction
Separation logic [Reynolds, 2002] supports the modular static verification of heap-manipulating
programs, including ones that contain recursion. Its variant Implicit Dynamic Frames (IDF)
[Smans et al., 2009] and extension with recursive abstract predicates [Parkinson and Bierman, 2005;
Smans et al., 2009] further support verifying recursive heap data structures, such as trees, lists,
and graphs. While these techniques allow users to specify and verify more code than ever before,
tools implementing them (e.g., Viper [Müller et al., 2016], VeriFast [Jacobs et al., 2011], Chalice
[Leino et al., 2009], JStar [Distefano and Parkinson, 2008], and SmallFoot [Berdine et al., 2006])
are still largely unused due to the burden they place on their users. Such tools poorly support
partial specifications, and thus require users to provide a number of auxiliary specifications (such
as folds, unfolds, loop invariants, and inductive lemmas) in an all or nothing fashion to support
inductive proofs of correctness. The tools also require many of these auxiliary specifications to
be written before they can provide feedback on the correctness of specifications for important
functional properties. For example, to prove that a simple insertion function preserves list acyclicity,
static verifiers need 1.5 times as many lines of auxiliary specifications to program code (Section 2).
They also need a significant number of these auxiliary specifications to uncover problems with
specifications of the acyclic property (Section 2).

Inspired by gradual typing [Siek and Taha, 2006], Bader et al. [2018] proposed gradual verification
to support the incremental specification and verification of software. Users can write imprecise (i.e.,
partial) specifications backed by run-time checking where necessary. An imprecise formula can be
fully unknown, written ?, or combine a static part with the unknown, as in ? ∗ G .5 == 2. Wise et al.
[2020] extend the initial system by Bader et al. [2018] by designing and formalizing the first gradual
verifier for recursive heap data structures. It supports imprecise specifications with accessibility
predicates from IDF and abstract predicates; and thus, also (in theory) the run-time verification
of these constructs. During static verification, an imprecise specification can be optimistically
strengthened (in noncontradictory ways) by the verifier to support proof goals. Wherever such
strengthenings occur, dynamic checks are inserted to preserve soundness. Gradual verification
smoothly supports the spectrum between static and dynamic verification. This is captured by

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.

https://doi.org/10.1145/3704808


Gradual C0: Symbolic Execution for Gradual Verification 14:3

properties adapted from gradual typing [Siek et al., 2015], namely the gradual guarantee, stating
that the verifier will not flag static or dynamic errors for specifications that are correct but imprecise,
and the fact that gradual verification conservatively extends static verification, i.e., they coincide on
fully precise programs.

While promising, the gradual verifier by Wise et al. [2020] has neither been implemented nor
validated in practice. Furthermore, their design relies onweakest liberal preconditions [Dijkstra, 1975]
for static reasoning rather than symbolic execution [King, 1976], which is the ideal reasoning
technique for tools based on separation logic or IDF. Indeed, Viper [Müller et al., 2016], VeriFast
[Jacobs et al., 2011], JStar [Distefano and Parkinson, 2008], and SmallFoot [Berdine et al., 2006]
all support these permission logics with symbolic execution, not weakest liberal preconditions.
Finally, the gradual verifier by Wise et al. [2020] is not efficient in the sense that it checks all heap
ownership and functional properties dynamically regardless of the precision of specifications.

This article presents the design, implementation, and validation of Gradual C01—the first grad-
ual verifier for imperative programs manipulating recursive heap data structures that is based
on symbolic execution. Gradual C0 targets C0, a safe subset of C designed for education, with
appropriate support (and pedagogical material) for dynamic verification. Technically, Gradual C0 is
built on top of the Viper static verification infrastructure [Müller et al., 2016], which facilitates the
development of program verifiers supporting IDF and recursive abstract predicates. Gradual C0’s
back-end leverages this infrastructure to simplify the implementation of gradual verifiers for other
programming languages, and Gradual C0’s front-end demonstrates how this is done for C0. Further,
Gradual C0 minimizes the insertion of dynamic checks using statically available information and
optimizes the checks’ overhead at runtime.

Overall, we address new technical challenges in gradual verification related to symbolic execution,
extensibility to multiple programming languages, and minimizing run-time checks and their
overhead:

—Gradual C0’s symbolic execution algorithm is responsible for statically verifying programs
with imprecise specifications and producing minimized run-time checks. In particular, Gradual
C0 tracks the branch conditions created by program statements and specifications to produce
run-time checks for corresponding execution paths. At run time, branch conditions are
assigned to variables at the branch point that introduced them, which are then used to
coordinate the successive checks as required. Further, Gradual C0 creates run-time checks
by translating symbolic expressions into specifications—reversing the symbolic execution
process.

—The run-time checks produced by Gradual C0 contain branch conditions, simple logical
expressions, accessibility predicates, separating conjunctions, and predicates. Each of these
constructs is specially translated into source code that can be executed at run-time for dy-
namic verification. Logical expressions are turned into assertions. Accessibility predicates and
separating conjunctions are checked by tracking and updating a set of owned heap locations.
Finally, predicates are translated into recursive Boolean functions. By encoding run-time
checks into C0 source code, we avoid complexities from augmenting the C0 compiler to
support dynamic verification. We also design these encodings to be performance friendly, e.g.,
owned heap locations are tracked in a dynamic hash table.

Work on gradual typing performance has shown that minimizing the insertion of dynamic checks
does not trivially correlate with overall execution performance; the nature of the inserted checks
(such as higher-order function wrappers) as well as their location in the overall execution flow of a

1Gradual C0 is hosted on Github: https://github.com/gradual-verification/gvc0

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.

https://github.com/gradual-verification/gvc0


14:4 J. DiVincenzo et al.

program can have drastic and hard-to-predict consequences [Campora et al., 2018; Feltey et al., 2018;
Takikawa et al., 2016]. Therefore, our validation of Gradual C0 aims to empirically evaluate the
relationship between minimizing check insertion and observed run-time performance in gradual
verification.We evaluate the performance of Gradual C0 by adapting the performance lattice method
of Takikawa et al. [2016] to gradual verification, exploring the performance characteristics for
partial specifications of four common data structures. This method models the gradual verification
process as a series of steps of partial specifications from an unspecified program (containing all ?s)
to a statically verifiable specification (not containing any ?s) where, at each step, an atomic conjunct
is added to the current, partial specification. Statically, we observe that as more specifications are
added, more verification conditions can be statically discharged. Though imprecision introduces
unavoidable run-time checks, gradual verification decreases run-time overhead by an average
of 7.1–40.2% compared to dynamic verification (and thus the approach by Wise et al. [2020]; for
context, the worst cases for the approach by Wise et al. [2020] range from 0.1 to 4.5 seconds
depending on the benchmark). Sources of run-time overhead correspond to the predictions made
in prior work, and our study shows that the gradual guarantee holds empirically for our tool across
thousands of sampled imprecise specifications. A reproducibility package for this evaluation is
provided as supplementary material.

Our work is complimentary to recent work by Zimmerman et al. [2024], and distinct in contribu-
tions. Our work includes the original development of symbolic execution based gradual verification
and describes the first implementation of the same, as well as related empirical results. The paper
by Zimmerman et al. [2024] proves that the approach in this article is sound by formalizing our
design at a higher level of abstraction, which is more useful for proofs.

2 Gradual C0 Improves the Static Specification Process

Fig. 1. Non-empty linked list insertion in C0.

Static verification tools, like Viper [Müller
et al., 2016], VeriFast [Jacobs et al., 2011],
Chalice [Leino et al., 2009], JStar [Distefano
and Parkinson, 2008], and SmallFoot [Berdine
et al., 2006], require a number of user-provided
auxiliary specifications, such as folds, unfolds,
lemmas, and loop invariants, to prove prop-
erties about recursive heap data structures.
Worse, they also require users towritemany of
these auxiliary specifications before the tools
can provide useful feedback on the correctness
of other specifications, including ones contain-
ing important functional properties.Therefore,

users are burdened by writing many detailed and extraneous specifications with inadequate static
feedback through the process. In this section, we illustrate this burden with a simple list insertion
example (inspired by a similar introductory example and discussion from Wise et al. [2020]) and
output from Viper. Then, we show in Section 3 how Gradual C0 overcomes this burden by smoothly
supporting the spectrum between static and dynamic checking. Users can avoid writing auxiliary
specifications and still get sound verification of their code with increased run-time checking. Users
can also receive run-time feedback on the correctness of their specifications very early in the
specification process, and the resulting error messages closely align with inherent problems in the
specifications or in the program, making debugging them easier.

Figure 1 implements a linked list and function that inserts a new node at the end of a given list,
called insertLast, in C0 [Arnold, 2010]. The insertLast function traverses the list to its end with

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.

https://files.atypon.com/acm/f8a443ed0482de062a9f983f94e77416


Gradual C0: Symbolic Execution for Gradual Verification 14:5

Fig. 2. The static verification of insertLast from Figure 1.

a while loop starting from the root. That is, insertLast implicitly assumes the list is non-empty
(non-null) and acyclic; and that for multiple successive calls to insertLast the list remains acyclic
and non-empty after insertion. These facts can be proven explicitly with static verification; the
complete static specification is given in Figure 2, highlighted in gray.

List acyclicity is specified with two predicates acyclicSeg and acyclic:
predicate acyclicSeg(Node* s, Node* e) =

s == e ? true : acc(s->val) && acc(s->next) && acyclicSeg(s->next, e)

predicate acyclic(Node* n) = acyclicSeg(Node* n, NULL)

The acyclicSeg predicate uses accessibility predicates (e.g., acc(s->val) and acc(s->next)) and
the separating conjunction (e.g., &&) from IDF [Smans et al., 2009]. In IDF, accessibility predicates
are used to denote ownership of heap locations, e.g., acc(s->val) && s->val == 2 states that
s->val is uniquely owned and contains the value 2 and s != NULL. Successful verification of a
function or loop requires accessibility predicates to be available for each heap location accessed
by the function or loop before the access point. For example, an IDF-based verifier (like Viper or
Gradual C0) ensures acc(y->next) is available to frame y->next in insertLast’s loop condition
on line 7 in Figure 1 before the loop; otherwise verification fails due to lack of permission to
access y->next. Accessibility predicates are only gained at allocations, e.g., acc(y->next->val)
and acc(y->next->next) on line 9 in Figure 1 and lost at de-allocations. Only one function or
loop may have ownership of a heap location at a time, so accessibility predicates are transferred
between functions and loops as specified by pre- and postconditions and loop invariants. Since

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:6 J. DiVincenzo et al.

the heap location for y->next (i.e., list->next) is allocated in insertLast’s callee, insertLast’s
precondition needs to specify acc(list->next) so ownership of the heap location can be passed
from the callee to insertLast and verification can succeed. Otherwise, the callee will retain
ownership and verification of y->next fails. Thanks to the aforementioned ownership tracking,
IDF-based verifiers can guarantee the absence of access errors, such as dangling or null-pointer
dereferences, and memory leaks, such as double frees, mismatched frees, and invalid frees.

The separating conjunction, denoted by &&,2 ensures memory disjointness: acc(s->next) &&
acc(s->next->next) states that the heap locations s->next and s->next->next are distinct (i.e.,
B ≠ s->next) and are each owned. Together, accessibility predicates and the separating conjunction
provide a way for specifications to describe parts of the heap, which is useful for ownership transfer
and specifying properties about the heap. For example, the recursive predicate acyclicSeg(s, e)
denotes that all heap locations in list s are distinct up to node e by recursively generating ac-
cessibility predicates for each node in s up to e, joined with the separating conjunction. Thus,
acyclicSeg specifies that a list segment is acyclic. Further, acyclicSeg(n, NULL) denotes that
all heap locations in list n are distinct and so n is acyclic, as specified with acyclic(n).

Now that we have specified acyclic, we use it in insertLast’s precondition (line 5) and
postcondition (lines 6–7) to denote preservation of list acyclicity and denote insertLast only
accesses a given list’s heap locations and returns access to the heap locations of insertLast’s
returned list. We also specify that insertLast preserves list non-nullness with simple comparison
logic (i.e., list != NULL and \result != NULL). Ideally, we would stop here and static verifiers
would be able to prove insertLast’s implementation is correct with respect to this specification;
however, as you can see in Figure 2 such tools require many more specifications. In fact, there are 27
lines of auxiliary specifications (comprised of folds, unfolds, loop invariants, and inductive lemmas);
in contrast to 18 lines of wanted specifications (the predicates and pre- and postconditions) and
program code. Furthermore, these auxiliary specifications are complex, as discussed next.

2.1 Auxiliary Specifications
Static verifiers cannot reliably unroll recursive predicates during verification; so, such tools rely
on explicit fold and unfold statements to control the availability of predicate information in
the verifier. This treats predicates iso-recursively; while an equi-recursive interpretation treats
predicates as their complete unrolling [Summers and Drossopoulou, 2013]. Consequently, the
acyclic and acyclicSeg predicates are unfolded and folded often in Figure 2 (lines 9–10, 12,
20–22, 30–32, and 34). Looking closely, we see that acyclic(list), which is assumed true from
the precondition, is unfolded on line 9. This consumes acyclic(list) and produces its body
acyclicSeg(list, NULL), which is subsequently unfolded on line 10. Then, at the fold on line 34,
the body of acyclic(list) is packed up into the predicate itself to prove the list remains acyclic
after insertion.

Additionally, static verifiers cannot tell if or when a loop will end (in our example the verifier
cannot tell when the list being iterated over ends), but must verify all paths through the program.
Therefore, static verifiers reason about loops using specifications called loop invariants, which are
properties that are preserved for each execution of the loop including at entry and exit. Further, loop
invariants must also provide information necessary for proof obligations after the loop, e.g., that the
list in insertLast is acyclic after insertion. In Figure 2, these constraints result in the loop invariant
on lines 14–16 that segments the list into three disjoint and acyclic parts: from the root up to the
current node y (acyclicSeg(list, y)), the current node y (acc(y->val) && acc(y->next)), and
from the node after y to the end (acyclicSeg(y->next, NULL)). Exposing y via its accessibility

2Most IDF papers use ∗ to denote the separating conjunction. We follow Viper and use && instead.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:7

Fig. 3. The incremental verification of insertLast from Figure 1.

predicates provides access to y->next on line 19 in the loop body; and, acyclicSeg(list, y)
helps prove acyclic(list) holds after the loop, as we will see next.

To prove acyclic(list) holds at the end of insertLast (line 35), it is sufficient to prove instead
that acyclicSeg(list, NULL) holds (line 34). After inserting a new node at the end of the list
(lines 27–29), we can build up an inductive proof with folds (lines 30–32) that the list is acyclic from
the insertion point y to the new end, i.e., acyclicSeg(y, NULL) holds. We also have that the list is
acyclic from the root to y (acyclicSeg(list, y)) from to the loop invariant, and so, we are done
after proving transitivity of acyclic list segments, i.e., acyclicSeg(list, y) and acyclicSeg(y,
NULL) implies acyclicSeg(list, NULL). Sadly, static verifiers cannot automatically discharge
such inductive proofs, and so we specify the proof steps in mergeLemma on lines 38–49. Then, after
using the lemma on line 33, we achieve our proof goal.

As we can see, not only do users of static verifiers need to write a number of auxiliary spec-
ifications in support of proof goals, the specifications are often more complex compared to the
program code itself even for simple examples like insertLast. Worse even, is that while users are
developing these complex specifications static tools provide limited feedback on their correctness
as demonstrated next (Section 2.2).

2.2 Lack of Early Specification Feedback
Since static verifiers, like Viper, limit themselves to reasoning about predicates iso-recursively and
rely on loop invariants to prove properties about loops, feedback on the correctness of specifi-
cations early in the specification process is limited. For example, consider that a user named
Daisy incorrectly specifies the body of acyclicSeg (our recursive predicate) as (s == e) ?
acc(s->val) && acc(s->next) && acyclicSeg(s->next, e) : true, which swaps the branches of
the ternary in the correct specification from Figure 2. Let’s see how Daisy comes across this error
while using Viper to incrementally specify insertLast in Figure 3. Each increment from the first
to the last (seventh) is highlighted in a different color. The first increment, highlighted in green,
specifies the precondition and postcondition of insertLast with acyclic and acyclicSeg (lines
2–4). Since predicates are black boxes in static verifiers, Viper only tells Daisy that there is insuffi-
cient permission to access y->next in the loop condition on line 10. So, Daisy specifies the required

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:8 J. DiVincenzo et al.

acc(y->next) permission (as highlighted in purple for the second increment on line 12) in the loop
invariant, which must frame the loop condition. But, alas Viper cannot prove that acc(y->next)
holds (is available) on entry to the loop. Without realizing the branches of acyclicSeg are out
of order, Daisy expects acyclicSeg(list, NULL)’s body to provide acc(y->next) at loop entry
as list != NULL and y == list; and so, she unfolds acyclic(list) and acyclicSeg(list,
NULL) on lines 6–7 making up the third specification increment highlighted in brown/rose gold.
Unfortunately, Viper still reports that acc(y->next) does not hold on entry to the loop, which
alerts Daisy to the problem with acyclicSeg.

With Viper, Daisy required three specification increments to detect a bug in the first unfolding
of acyclicSeg, and this problem gets worse the deeper the bug is in the recursive predicate.
For example, consider now that acyclicSeg’s body is incorrectly specified as (s == e) ?true :
acc(s->val) && acc(s->next) && acyclicSeg(e, s->next), which swaps s->next and e in the
recursive call to acyclicSeg. As a result, acyclicSeg asserts in lock-step that the nodes in lists
s and e are accessible and separated—which is not the intended behavior of acyclicSeg—and
acyclicSeg now always fails when e reaches its end, i.e., is NULL, as it tries to assert acc(e->val)
and acc(e->next). It takes until the fourth specification increment highlighted in blue to discover
that acyclicSeg is incorrectly specified using Viper. As before, Daisy is led to specifying the first
three increments by Viper’s error messages that first require acc(y->next) in the loop invariant
and then require acc(y->next) to hold on entry to the loop. This time, however, acyclicSeg(list,
NULL)’s body contains acc(y->next) when list != NULL, so Viper can prove acc(y->next) holds
on loop entry and instead reports that the loop invariant acc(y->next) might not be preserved
by the loop body. Daisy recalls the loop iterates over all nodes in the list with the current node
being y, so preserving acc(y->next) in the loop is the same as showing that Viper has accessibility
predicates for every node in the list. As a result, she specifies the fourth increment (lines 12–13
and 17), which continuously unfolds the acyclicSeg(list, NULL) predicate on every iteration
of the loop and captures the information in its body in the loop invariant. Alas, Viper reports that
the new loop invariant does not hold on entry as it cannot prove acyclicSeg(y->next, NULL)
holds here. Since this information should come from unfolding acyclicSeg(list, NULL) on line
7, Daisy takes another look at acyclicSeg’s body and discovers her specification error. That is,
it takes four specification increments for Daisy to realize her mistake and the fourth increment
required her to think deeply about her while loop.

Clearly, static verifiers burden their users, like Daisy, by requiring them to write a number of
complex auxiliary specifications both for proofs and to receive useful feedback on the correctness
of their specifications. Fortunately, as we will show next in Section 3, Gradual C0 overcomes this
burden by smoothly supporting the spectrum between static and dynamic checking.

3 Gradual C0 to the Rescue
In this section, we show howGradual C0’s ability to smoothly integrate static and dynamic checking
allows users to overcome specification burdens inherent to static verification, e.g., that users have
to write complex auxiliary specifications in support of proofs and to receive useful feedback on the
correctness of their specifications.

3.1 Ignore Auxiliary Specifications with Gradual C0
In Section 2.1, we saw how static verifiers force users to write complex auxiliary specifications (like
folds and unfolds, loop invariants, and inductive lemmas) in support of proof goals. In contrast,
Gradual C0 allows users to write as many or as few auxiliary specifications as they want, and
instead utilizes dynamic verification to check proof obligations not discharged statically due to
missing specifications. For example, consider Figure 3, in which our user Daisy incrementally

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:9

specifies insertLast for preservation of list acyclicity and non-nullness. With Gradual C0, Daisy
only needs to specify the first increment in green, which contains the pre- and postcondition of
insertLast on lines 2–4. She can completely avoid specifying the auxiliary specifications in the
rest of the increments by instead specifying ? in the loop invariant on line 10. Then, Gradual C0 uses
the allocation statement on line 23 to statically validate the write accesses of y->next->val and
y->next->next on lines 24–25. It can also prove statically that the list after insertion is non-null.
All other proof obligations, which ensure the while loop owns the heap locations it accesses and
the list after insertion is acyclic, are checked dynamically as described in detail in Section 4.4.

At a high-level, to dynamically verify heap accesses, Gradual C0 tracks which concrete heap
locations are owned at each program point during execution, and disallows heap accesses for
locations not owned at that program point (program execution will stop with an error message
when the program attempts to access an un-owned location). In the insertLast example, run time
checking the while loop involves three parts: (1) verifying access to y->next in the loop condition
(line 10), (2) verifying access to y->next in the loop body (line 16), and (3) verifying access to
y->next in the alloc statement directly after the loop (line 23). That is, Gradual C0 checks that the
loop receives ownership of all heap locations in the given list, which are being iterated over by
the loop. In particular, when insertLast is called, Gradual C0 transfers ownership of dynamic
heap locations allocated in insertLast’s callee to insertLast as specified in acyclic(list) &&
list != NULL. These are the heap locations making up list. Since insertLast’s loop invariant is
? and thus may denote any accessibility predicate, all heap locations owned by insertLast before
the loop are conservatively passed to the loop, which successfully verifies its execution. Gradual
C0 also successfully verifies y->next in the alloc statement (line 23), because Gradual C0 transfers
ownership of list’s heap locations back to insertLast after the loop, as denoted by ?. Note, if
y->next on line 16 were incorrectly written as y->next->next, then Gradual C0 would produce a
heap ownership run-time error when insertLast is given a list with two nodes (a list with 1 node
would not execute the loop body). After the loop body executes once, y would be equal to NULL, so
y->next in the loop condition dereferences a null pointer. Gradual C0 catches this, because the
only heap locations allocated and thus owned at this program point are the ones for list’s two
nodes (NULL->next can never be owned).

Since insertLast’s while loop accesses every node in a given list and Gradual C0 verifies each
access at run time, the larger the list the higher the run-time cost of verification. This cost is
unacceptable to Daisy, so she statically specifies the while loop with the first four increments in
Figure 3 (lines 2–4, 6–7, 12–13, and 17). The new loop invariant (lines 12–13) uses acyclicSeg to
expose acc(y->next) for verifying access to y->next in the loop condition, loop body, and after
the loop. The unfolds on lines 6–7 and 17 are used to prove that the loop invariant is preserved
by the loop given the precondition on line 2. After all this work, Daisy is not interested in also
statically specifying the list after insertion is acyclic, and so, she joins ? with her newly specified
loop invariant. As a result, Gradual C0 now additionally checks heap accesses in the while loop
statically reducing run-time cost, and only checks acyclic(\result) from the postcondition of
insertLast (line 3) dynamically (i.e., the list returned after insertion is acyclic). Briefly, Gradual C0
checks acyclic(\result) by checking whether or not acyclicSeg(\result, NULL) is true; if
acyclicSeg(\result, NULL) is false, Gradual C0 stops execution and produces an error message.
Gradual C0 checks acyclicSeg(\results, NULL) by unrolling the predicate completely and
checking the formulas inside—an equi-recursive treatment. That is, Gradual C0 asserts ownership
of all the heap locations in the \result list, and also asserts that these heap locations are separated
in memory. The \result list contains the heap locations from the list after the loop and the
newly inserted node on line 23. Dynamic ownership transfer (described in the previous paragraph)
guarantees the nodes in the list after the loop are accessible and separated in memory; and,

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:10 J. DiVincenzo et al.

the allocation on line 23 guarantees ownership of the newly inserted node’s heap locations and
that these heap locations are distinct in memory from the ones in the list after the loop. So,
acyclicSeg(\result, NULL) holds at run time and thus acyclic(\result) does too (more
details can be found in Section 4.4 on how predicates are checked at run time in Gradual C0).

By allowing Gradual C0 to check acyclic(\result) dynamically, Daisy saved herself a lot of
specification effort. She avoided building up acyclicSeg from the previous end of the list to the new
one (increment five in orange, lines 26–28), specifying a more complex loop invariant (increment
six in red, lines 9, 11, and 18–19), and stating and proving transitivity of acyclic list segments
(increment seven in yellow, lines 20 and 29).3 Daisy is very happy to make this human-effort vs.
run-time cost tradeoff.

3.2 Gradual C0 Provides Earlier Feedback with Run-time Checks
As we saw in Section 2.2, static verifiers struggle to provide early feedback on specification errors
in predicates. Using Viper, it took until the third specification increment in Figure 3 for Daisy to
discover the simple error in acyclicSeg’s body, (s == e) ? acc(s->val) && acc(s->next) &&
acyclicSeg(s->next, e) : true, which swaps the branches of the ternary in the correct spec-
ification from Figure 2. In contrast, with Gradual C0, Daisy easily discovers this error on the
first specification increment (in green, lines 2–4), which specifies the pre- and postcondition of
insertLast. She additionally specifies ? on the loop invariant and provides a simple test case that
calls insertLast on a list with one node. Then, Gradual C0 alerts Daisy to the error in acyclicSeg
by reporting at run time that y->next in the loop condition (line 10) is not owned at this point
and therefore cannot be accessed. Daisy’s test case allocates this heap location successfully (and
insertLast up until line 10 is implemented correctly), so this error can only occur if ownership
is not transferred to insertLast correctly via its precondition. Thus, Daisy takes another look at
acyclicSeg with this in mind and realizes her specification error. Similarly, the second example
of an error in acyclicSeg’s specification, which swaps s->next and e in the recursive call to
acyclicSeg ((s == e) ?true : acc(s->val) && acc(s->next) &&acyclicSeg(e, s->next)),
took four specification increments in Figure 3 to be exposed by Viper. Again with Gradual C0,
Daisy can detect the error by the first increment as long as she specifies ? on her loop invariant and
supplies a simple test case with a list containing two elements. In this case, Gradual C0 reports at
run time that acc(s->val) from acyclicSeg does not hold for s which is NULL. Since acc(s->val)
will never hold when s == NULL, Daisy takes another look at acyclicSeg’s body and realizes her
error. That is, Gradual C0’s dynamic checking of partial specifications is helpful for detecting errors
in recursive predicates much earlier in the specification process than static verification alone and
the errors better capture the inherent problems in the specifications.

To summarize, users of Gradual C0 may write as many or as little auxiliary specifications as they
want and still get sound verification of their code by trading off between human-effort and run-time
cost. Users can also receive feedback on the correctness of their specifications much earlier in the
specification process than if they used static verification alone and the run-time errors reported
often closely match the inherent problems with the specification.

4 Gradual C0’s Design and Implementation
Gradual C0 is a working gradual verifier for the C0 programming language [Arnold, 2010] that is
built as an extension of the Viper static verifier [Müller et al., 2016]. Our goals for the design and

3Note, Gradual C0 does not support lemmas due to it being unclear how to compute termination for lemmas containing
imprecision. Instead, we use a recursive function in Figures 2 and 3 to achieve the same result. Thus, mergeLemma is always
executed when called, even when it is fully statically verified.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:11

Fig. 4. System design of Gradual C0.

implementation of Gradual C0 are to:

—be easily extensible to other programming languages beyond C0,
—minimize run-time overhead from verification, and
—use symbolic execution for static reasoning.

Consequently, we settled on the design illustrated in Figure 4. Gradual C0 is structured in two
major subsystems: (1) the gradual verification pipeline and (2) the C0 pipeline. Within the gradual
verification pipeline, a C0 program is first translated AST-to-AST into a Gradual Viper program
by Gradual C0’s frontend module, GVC0. The GVC0 module implements a simple parser, abstract
syntax, and type checker for C0 programs to facilitate the translation. The Gradual Viper module is
the backend of Gradual C0 and implements its own parser, abstract syntax, and type checker for its
own imperative language called the Gradual Viper language. This language is the Viper language
plus imprecise formulas and allows Gradual Viper to support multiple frontend languages, not just
C0. We chose to build a C0 frontend first because C0 is a pedagogical version of C designed with
dynamic verification in mind, and we plan to use it in the classroom.

Once the C0 program is translated into a Gradual Viper program, it is optimistically statically
verified by the Gradual Viper module. Gradual Viper extends Viper’s symbolic execution-based
verifier to support imprecise formulas and resulting holes in static reasoning as inspired byWise et al.
[2020] and gradual typing [Herman et al., 2010; Siek and Taha, 2006; Siek et al., 2015]. Consequently,
by construction Gradual Viper supports full static verification of programs when specifications are
complete. Differing from the work by Wise et al. [2020], Gradual Viper also extends the symbolic
execution algorithm to create a description of needed run-time checks in support of static holes.
The run-time checks are minimized with statically available information during reasoning. Finally,
GVC0 takes these run-time checks and encodes them in the original C0 program to produce a
sound, gradually verified program. The C0 pipeline takes this C0 program and feeds it to the C0
compiler, CC0, which is used to execute the program. Note, the encoding of checks into C0 source
code optimizes for run-time performance and simplifies extending C0 with dynamic verification in
our domain.

The rest of this section describes the implementation of Gradual Viper and GVC0’s designs in
more detail and illustrates the concepts via example. We also highlight design and implementation
choices influenced by our goals. Section 4.1 discusses how C0 programs are translated to Gradual
Viper programs, along with modifications made to both C0 and Viper for gradual verification.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:12 J. DiVincenzo et al.

Fig. 5. Shared abstract syntax definitions.

Fig. 6. GVC0 abstract syntax.

Fig. 7. Gradual Viper abstract syntax.

Fig. 8. Abstract syntax comparison for GVC0 and Gradual Viper.

Then, Sections 4.2 and 4.3 detail Gradual Viper’s symbolic execution approach and how it produces
minimized run-time checks. Section 4.4 focuses on how GVC0 turns run-time checks from Gradual
Viper into C0 code for dynamic verification. Finally, Section 4.5 gives an informal statement of
soundness for Gradual C0 and points to related work that has formalized and proven Gradual C0’s
design sound [Zimmerman et al., 2024].

4.1 Translating C0 Source Code to Gradual Viper Source Code for Verification
TheC0 language, with its minimal set of language features and its existing support for specifications,
serves well as the target language for our implementation. As its name suggests, C0 borrows heavily
from C, but its feature set is reduced to better suit its intended purpose as a tool in computer science

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:13

education [Arnold, 2010]. It is a memory-safe subset of C in the same sense as Java. C0 forbids
casts, pointer arithmetic, and pointers to stack-allocated memory. C0 produces run-time exceptions,
which terminates program execution, when null-pointers are dereferenced and arrays are accessed
out of bounds. All pointers are created with heap allocation, and de-allocation is handled by a
garbage collector.

The abstract syntax for C0 programs supported by Gradual C0 is given in Figures 5 and 6, i.e.,
GVC0’s abstract syntax. GVC0 programs are made of struct and method declarations that largely
follow C syntax. What differs from both C and C0 is GVC0’s specification language. Methods
may specify constraints on their input and output values as side-effect-free gradual formulas q̃ ,
usually in //@requires or //@ensures clauses in the method header. Loops and abstract predicates
contain invariants and bodies, respectively, that are made of gradual formulas. Such formulas q̃
are imprecise formulas ? && q or complete Boolean formulas q (note, in this case, q must be
self-framed as inherited from IDF and defined in Section 4.2.1). In this article, we write ? && q with
? on the left for convenience. It is okay to nest ? arbitrarily in a formula; but, this same formula
with ? moved out to the left has the same meaning as the one with nested ? (this follows the
interpretation of gradual formulas defined in the work by Wise et al. [2020]). A formula q joins
Boolean values, Boolean operators, predicate instances, accessibility predicates, and conditionals
via the separating conjunction &&. GVC0 programs also contain //@fold p(4̃) and //@unfold

p(4̃) statements for predicates and //@assert q statements for convenience. Note, in GVC0, 4̃ is
used in program specifications rather than 4 to ensure specifications are side-effect-free.

To support the gradual verification ofmany different imperative programming languages, Gradual
Viper verifies programs written in its own custom imperative language, which is designed to ease
the translation from other imperative languages into it. The Gradual Viper language’s abstract
syntax is given in Figures 5 and 7. The GVC0 and Gradual Viper languages are roughly 1-to-1,
including their specification languages, so translation is mostly straightforward, but there are
some differences as highlighted in orange (trivial) and brown/rose gold (nontrivial) in Figure 8. For
example, for loops in GVC0 are rewritten as while loops in Gradual Viper, and alloc(struct
T) expressions are translated to new statements containing struct T’s fields. Additionally, GVC0
allows method calls, allocs, and ternaries in arbitrary expressions, while Gradual Viper only allows
such constructs in corresponding program statements.4 Therefore, GVC0 uses fresh temporary
variables to version expressions containing the aforementioned constructs into program statements
in Gradual Viper. The temporary variables are then used in the original expression in place of
the corresponding method call, alloc, or ternary. Nested field assignments, such as x->y->z = a,
are similarly expanded into multiple program statements using temporary variables. Value type
pointers in GVC0 are rewritten as pointers to single-value structs that can be easily translated into
Gradual Viper syntax. Finally, assert(4) statements are essentially ignored in Gradual Viper; 4 is
translated into Gradual Viper syntax to verify its heap accesses, but 4 is not asserted. Instead, the
assert is always kept in the original C0 program and is checked exclusively at run time. Figure 9
provides a simple example program written in both the GVC0 language (Figure 9(a)) and Gradual
Viper language (Figure 9(b)) for reference.

Note that GVC0 does not support array and string values since gradually verifying any interesting
properties about such constructs requires nontrivial extensions to current gradual verification
theory. Similarly, the Gradual Viper language, in contrast to the Viper language, does not support
the aforementioned constructs and fractional permissions (see Section 7 for more details).

4Note, ternaries correspond to if statements.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:14 J. DiVincenzo et al.

Fig. 9. A gradually verified, bank withdraw program that is contrived to illustrate how Gradual Viper works.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:15

4.2 Gradual Viper: Symbolic Execution for Gradual Verification
In this section, we describe the design and implementation of Gradual Viper’s symbolic execution-
based algorithm supporting the static verification of imprecise formulas. Gradual verification of
recursive heap data structures was formalized with weakest liberal preconditions [Wise et al., 2020].
All of the static verifiers supporting separation logic or IDF—such as Viper [Müller et al., 2016],
VeriFast [Jacobs et al., 2011], JStar [Distefano and Parkinson, 2008], and SmallFoot [Berdine et al.,
2006]—reason with symbolic execution. Therefore, this work serves as a first guide for building
gradual verifiers from static verifiers using symbolic execution for reasoning. Additionally, unlike
in the work by Wise et al. [2020], we use our static reasoning algorithm not just for optimistic static
verification but also for soundly reducing the number of run-time checks required during dynamic
verification. That is, during a single execution of Gradual Viper a program is statically verified
and a set of minimized run-time checks is produced for program points where the algorithm is
optimistic during verification due to imprecision.

Before formalizing Gradual Viper’s implementation in Section 4.3, we first demonstrate at a
high-level with examples how symbolic execution is used to perform optimistic static verification
of programs containing recursive heap data structures and how minimized run-time checks are
produced during this process. We also point out novel technical challenges faced and solutions
developed thanks to relying on symbolic execution both for static verification and minimizing
run-time checks.

4.2.1 Optimistic Static Verification in Gradual Viper by Example. The simple program given
in Figure 9(b) implements a withdraw function (method), which subtracts the balance in one
bank account (the subtrahend) from the balance in another account (the minuend) returning the
result.5 Any client program of withdraw must ensure the subtrahend’s balance is less than or
equal to the minuend’s balance and that both balances are positive as specified by withdraw’s
precondition (line 11). Then, withdraw will return an account with a positive balance as specified
by withdraw’s postcondition (lines 12–13). Additionally, withdraw’s postcondition ensures the
subtrahend’s balance remains positive as well. Note, the withdraw example is contrived to better
illustrate how Gradual Viper works and its interesting aspects.

Well-Formedness of User Written Specifications. Gradual Viper begins static verification by first
checking user written specifications, like predicate bodies, preconditions, and postconditions, for
well-formedness. That is, user specifications must be self-framed and cannot contain duplicate
accessibility predicates or predicates joined by the separating conjunction &&. Self-framing from
IDF [Smans et al., 2009] simply means that a formula must contain accessibility predicates for any
heap locations accessed in the formula. In gradual verification [Wise et al., 2020], ? can represent
these accessibility predicates. For example, in the withdraw program geqTo’s body (lines 4–5) is self-
framed, because ? can represent acc(a1.balance) and acc(a2.balance) to frame a1.balance and
a2.balance. On the other hand, positive’s body (line 7) is classically self-framed as it explicitly
contains acc(a.balance) to frame a.balance. All of the user written formulas, which are geqTo’s
body (lines 4–5), positive’s body (line 7), withdraw’s precondition (line 11), and its postcondition
(lines 12–13), are well-formed. Note, static tools implementing IDF or separation logic interpret
duplicate accessibility predicates or predicates joined by the separating conjunction in user written
specifications as a false specification rather than as a well-formedness error like we do. This
additional well-formedness check allows Gradual Viper to verify assertions of user written formulas

5Note, we refer to the version of the withdraw program written in the Gradual Viper language rather than its Gradual C0
counterpart in Figure 9(a) as we will be discussing how Gradual Viper works in this section.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:16 J. DiVincenzo et al.

without interpreting an imprecise state that doesn’t already contain false as false, which violates
the interpretation of imprecise formulas (states) in the work by Wise et al. [2020].

Next, Gradual Viper optimistically statically verifies each function in the given program, e.g.,
the withdraw function in our running example. This involves symbolically executing the function
from top to bottom and tracking information in a symbolic state. Information is gathered from the
execution of both specifications and code, and proof obligations are established by the symbolic
state. If any obligations are established optimistically, corresponding run-time checks are stored in
the symbolic state. Figure 9(c) displays the contents of the symbolic state at every program point
(marked by program lines) during the verification of withdraw. In general, a symbolic state can
be thought of as writing an intermediate logical formula in a special form. We will discuss the
contents of a symbolic state in more detail as we work through the withdraw example.

Producing a Precondition. At the start of withdraw (lines 14–15), information in the precondi-
tion, e.g., geqTo(a1,a2) is produced or translated into an empty symbolic state resulting in the
first state in the table in Figure 9(c). As with formulas, symbolic states may be imprecise or not,
meaning information may be missing from the state due to imprecision. In fact, you can think of an
imprecise symbolic state as representing an imprecise intermediate formula. Here, the precondition
geqTo(a1,a2) is precise, so the state remains precise. Had the precondition been imprecise, then
the state would become imprecise. Note, precision in a static context as in Gradual Viper means the
formula does not contain ? at the top-level. Predicates are treated as black-boxes, so even if their
bodies are imprecise, as with geqTo(a1,a2), a formula containing them, such as geqTo(a1,a2),
can be precise. This follows the iso-recursive interpretation of precision defined in the work byWise
et al. [2020] for the static side of gradual verification.6 In contrast, GVC0 utilizes an equi-recursive
interpretation of precision for dynamic verification (as inspired by Wise et al. [2020] and discussed
in Section 4.4.3). Local variables are mapped to symbolic values in a symbolic, variable store. Since
a1 and a2 are arguments to withdraw and res the return value, they are all assigned fresh symbolic
values t1, t2, and t3, respectively, in the store. Then, permissions like accessibility predicates and
predicates can be stored in a symbolic heap (either the optimistic heap or heap) in terms of the
symbolic values. We call symbolic versions of permissions heap chunks. Since geqTo(a1,a2) is
concretely known it is added directly to the heap as the heap chunk geqTo(t1,t2). An important
invariant of the heap is that permissions in it are guaranteed to be separated in memory, i.e., when
they are joined by the separating conjunction they return true. The optimistic heap contains heap
chunks for accessibility predicates that are optimistically assumed during verification and is intro-
duced in this work to reduce the number of run-time checks produced by Gradual Viper. We will
see how this works as we continue to discuss the withdraw example. For now, the optimistic heap is
empty. The path condition contains constraints on symbolic values that have been collected on the
current verification path. The precondition geqTo(t1,t2) only contains permission information,
so the path condition is empty. Further, producing a formula into the symbolic state does not
introduce any run-time checks, so the set of run-time checks also remains empty.

Unfolding a Predicate. Next, Gradual Viper executes the unfold statement on line 15 causing
the predicate geqTo(a1,a2) to be consumed and then its body to be produced into the state on
lines 15–16. In general, consuming a formula (1) checks whether the formula is established by
the symbolic state, (2) generates minimized run-time checks for the state to establish the formula
soundly, and (3) removes permissions asserted in the formula from the symbolic state. That is,
consume is Gradual Viper’s mechanism for checking proof obligations, and as we will see, is
used a few different times throughout the verification of withdraw. Here, since geqTo(t1,t2)

6We deviate from this interpretation in some edge cases as described in Section 4.3.7.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:17

is in the heap, geqTo(a1,a2) is established by the symbolic state and no run-time checks are
required. It is then removed from the heap as it is “consumed.” After consumption, geqTo(a1,a2)’s
body (lines 4–5) is produced into the current state (the state without geqTo(t1,t2)). The body of
geqTo is imprecise, so the symbolic state is made imprecise (as seen in Figure 9(c) at lines 15–16).
The rest of geqTo’s body is a Boolean expression constraining a1 and a2’s account balances: a1’s
balance is greater than or equal to a2’s balance and a2’s balance is positive. Before adding these
constraints to the path condition, Gradual Viper first looks for heap chunks in the current symbolic
state corresponding to accessibility predicates that frame a1.balance and a2.balance in geqTo’s
body. Both the heap and optimistic heap are empty, but the state is imprecise so the missing heap
chunks are optimistically assumed to be in the state. In fact, it is sound to make this assumption
without any run-time checks, because we are producing (rather than consuming) the predicate
body. As a result, fresh symbolic values p1 and p2 for a1.balance and a2.balance, respectively,
are generated and used to record constraints on the balances in the path condition. Gradual Viper
also records that the receivers a1 and a2 are non-null in the path condition and adds heap chunks
acc(t1,balance,p1) and acc(t2,balance,p2) to the optimistic heap. Note, these heap chunks are
added to the optimistic heap rather than the heap, because getTo’s body does not specify whether
or not a1 (t1) or a2 (t2) alias. So adding them to the heap would break the heap’s invariant. The
final symbolic state after consuming geqTo(a1,a2) and producing its body is given in Figure 9(c),
lines 15–16.

Branching. After the unfold on line 15, Gradual Viper reaches the start of the if statement on the
following line 16. As is common with static verifiers based on symbolic execution, Gradual Viper’s
execution branches at if statements. Execution also branches at other conditioned points, such as
logical conditionals and loops. Gradual Viper analyzes the then branch (lines 16–18) under the
assumption the condition a1 == null || a2 == null is true, and the else branch (lines 18–24)
under the assumption a1 == null || a2 == null is false. These assumptions are added to the
path condition for each execution path, respectively. However, in our example the symbolic state
going into the if statement (Figure 9(c), lines 15–16) states that both a1 and a2 are non-null. So
the then branch is infeasible, and Gradual Viper prunes this execution path resulting in the blank
symbolic states in Figure 9(c) from lines 16–18. Both accounts being non-null means the else branch
condition for sure holds and so execution proceeds down this branch without any changes to
the symbolic state. That is, for withdraw to be statically verified, this one execution path must
successfully verify. If Gradual Viper execute both branches, then determining verification success
is a bit more complicated:

— If the current symbolic state is precise, then both execution paths must successfully verify.
This is the default functionality in static verifiers.

— If the current symbolic state is imprecise, then verification succeeds when one or both paths
successfully verify. When only one path succeeds and the state is imprecise, Gradual Viper
optimistically assumes the state contains information that forces program execution down
the success path only at run time. To ensure the program will never actually execute the
failing branch (i.e., to ensure soundness), Gradual Viper adds a run-time check for the success
path’s condition at the branch point. For example, consider if (x > 2) //@ assert false;
else //@ assert true; where the symbolic state is imprecise but otherwise empty prior to
statically verifying this if statement. Gradual Viper first splits execution and verifies both the x
> 2 branch and x <= 2 branch; where, the former branch fails due to asserting false,7 while

7Note, an imprecise state cannot be assumed to contain information that makes a non-false state false, otherwise Gradual
Viper will statically verify all programs trivially [Wise et al., 2020].

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:18 J. DiVincenzo et al.

the latter succeeds due to asserting true. Since one of the execution paths fails, a normal
static verifier would report verification of the if statement a failure. However, Gradual Viper’s
static verifier optimistically assumes ? contains x <= 2 and the failing branch is unreachable
code. So, Gradual Viper successfully verifies the if statement and produces a run-time check
for x <= 2 before the if. This more permissive static functionality is critical for adhering to
the gradual guarantee at branch points.

Variable Assignment. Let’s look now at how Gradual Viper verifies the else branch (lines 18–24).
At the variable assignment on line 19, Gradual Viper first evaluates the right-hand expression to the
symbolic value p1 - p2. To do this, Gradual Viper first looks for heap chunks for a1.balance and
a2.balance in the current symbolic heaps (Figure 9(c), lines 18–19) to both frame the locations and
get their values. Both heap chunks are in the optimistic heap, so no run-time checks are required
for framing and p1 and p2 are used in the evaluation of the right-hand expression. Note, if Gradual
Viper did not add the aforementioned heap chunks to the optimistic heap when producing the body
of geqTo(a1,a2), then Gradual Viper would create run-time checks for them here in the program.
However, these checks would be duplicates, because Gradual Viper also checks that these heap
chunks are available when ensuring the precondition getTo(a1,a2) holds in client contexts at
calls to withdraw. So sound tracking of heap chunks in an optimistic heap has helped us avoid
duplicating run-time checks! Finally, Gradual Viper adds a new mapping to the variable store for
newB and its fresh symbolic value t4; and then, adds the constraint t4 = p1 - p2 to the path
condition to record information from the assignment in the symbolic state (Figure 9(c), lines 19–20).

Field Assignment. Next, a1.balance is assigned newB’s value in the field assignment on line 20.
Gradual Viper mimics this behavior symbolically by first pulling newB’s value t4 from the symbolic
state (Figure 9(c), lines 19–20). Then, Gradual Viper looks for a1.balance’s heap chunk in the state
for framing, and if there, removes the chunk as a1.balance’s value may change in the write, i.e.,
acc(a1.balance) is consumed. Gradual Viper also asserts that a1 is non-null. The heap chunk for
a1.balance is in the optimistic heap and a1 != NULL is in the path condition, so no run-time checks
are needed here. Then, a1.balance’s heap chunk is removed from the state; and, unfortunately, this
action causes a2.balance’s heap chunk to be removed from the state as well. Gradual Viper does
not know whether or not a1 and a2 alias, because this information does not appear in the current
path condition and the optimistic heap does not maintain the separation invariant. Then, since the
state is imprecise Gradual Viper could assume that a1.balance and a2.balance refer to the same
heap location, i.e., a1 and a2 are aliased. In this case, removing a1.balance’s heap chunk requires
also removing a2.balance’s heap chunk as a2.balance may have also changed with the write.
On the other hand, the case where they do not alias and a2.balance’s heap chunk can stay in the
optimistic heap is also possible from Gradual Viper’s perspective. To simply and soundly cover
both cases Gradual Viper removes a2.balance’s heap chunk by default when alias information
is unknown. As we will see next, this comes at the cost of additional run-time checks later in the
verification of withdraw. Finally, Gradual Viper produces a new heap chunk for a1.balance into
the state to track its new, fresh symbolic value p3 after the write and updates the path condition
with the assignment information p3 = t4 (Figure 9(c), lines 20–21).

Folding a Predicate. After a1.balance is assigned a new balance, Gradual Viper executes the fold
statement on line 21. Folding a predicate is similar to unfolding a predicate except that the function-
ality is reversed: positive(a1)’s body is consumed from the current state (Figure 9(c), lines 20–21)
and then positive(a1) is produced into the state after consumption (Figure 9(c), lines 21–22).
The body of positive(a1) is acc(a1.balance) && a1.balance >= 0, so acc(a1.balance) is con-
sumed first then a1.balance >= 0 second. The heap chunk acc(t1,balance,p3) corresponding

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:19

to acc(a1.balance) is in the heap and a1 != null holds in the path condition, so no run-time
check is required for consuming acc(a1.balance). Then, a1.balance’s heap chunk is removed
from the heap as seen in Figure 9(c), lines 21–22. Next, the Boolean expression a1.balance >= 0
is evaluated to its symbolic value p3 >= 0. Recall that to do this, Gradual Viper must look up a
heap chunk for a1.balance in the symbolic state to both frame the heap location and get its value.
However, Gradual Viper just removed this heap chunk from the current state due to the left-to-right
execution of consume. To solve this issue, Gradual Viper looks for framing and value information in
the state before the fold, i.e., the state before consumption at lines 20–21 in Figure 9(c). As we know,
a1.balance’s heap chunk is in this state and maps a1.balance to the value p3, so no run-time
check is needed for framing. Then, p3 >= 0 is asserted against the current path condition. Since p1
>= p2 >= 0 and p3 = t4 = p1 - p2 are in the path condition, p3 is clearly greater than or equal
to 0 and is proven directly by the path condition. That is, no run-time check is needed for p3 >= 0.
Finally, positive(a1) is produced into the current state, which adds positive(t1) to the heap
resulting in the final version of the state in Figure 9(c), lines 21–22.

Next, Gradual Viper executes the second fold statement on line 22 with the aforementioned state.
This fold statement consumes positive(a2)’s body and then produces positive(a2) into the
state. So as before, Gradual Viper first consumes acc(a2.balance) and then a2.balance >= 0. The
receiver a2 is proved to be non-null by the path condition; however this time, the heap chunk for
acc(a2.balance) is not in either of the heaps. Fortunately for us, the state is imprecise and can opti-
mistically contain this heap chunk, so a run-time check is produced for acc(a2.balance) as seen in
the state after folding positive(a2) in Figure 9(c), lines 22–23. Recall, “run-time checks” produced
by Gradual Viper are descriptions of required run-time checks, not something that can be executed
at run time. To see how Gradual C0’s frontend GVC0 encodes these descriptions as executables refer
to Section 4.4. Note, since this Gradual Viper run-time check occurs down the else branch of the
if statement in withdraw, branch information, e.g., ;12 ,¬(a1 = null || a2 = null), is included
with the check. The location ;12 specifies where the branch point originated in the program, e.g.,
line 16, and ¬(a1 = null || a2 = null) is the assumption made at the branch point for the
current execution path. Additionally, ;21 contains the location where the check itself is required in
the program, e.g., line 22. While it does not happen in the withdraw example, sometimes different
checks are required at the same program point down different execution paths. So, Gradual Viper
attaches branch information for the entire execution path in a function to each run-time check to
allow GVC0 (or other frontends) to apply checks only on the execution path they are required. This
prevents Gradual C0 from running checks that do not need to run, which may cause the tool to
erroneously fail and produce false positives. Now, Gradual Viper removes acc(a2.balance) from
the current state (Figure 9(c), lines 21–22), which actually causes positive(t1) to be removed
from the heap as well. Predicates are treated as black boxes in Gradual Viper; so unless told oth-
erwise, Gradual Viper conservatively assumes acc(a2.balance) is in positive(t1) and removes
positive(t1) from the heap alongside acc(a2.balance). The only way Gradual Viper can guar-
antee acc(a2.balance) is not in positive(t1) is if a heap chunk for a2.balance and positive(t1)
both exist in the heap, as the heap maintains the separation invariant. In this case, positive(t1)
can remain in the heap while only acc(a2.balance) is removed. Of course, in our example the
heap chunk for a2.balance is definitely not in the heap, so positive(t1) is removed.

Continuing, Gradual Viper consumes a2.balance >= 0, which first looks for a heap hunk to
frame a2.balance in the state before the consume (Figure 9(c), lines 21–22). However, neither of the
heaps contain a heap chunk for a2.balance. As before, Gradual Viper uses imprecision to optimisti-
cally assume the heap chunk is in the state and produces a run-time check for acc(a2.balance).
Since this run-time check for the same location already exists in the state, the two checks are
condensed into the first one. Then, Gradual Viper returns a fresh symbolic value for a2.balance,

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:20 J. DiVincenzo et al.

say p4, to evaluate a2.balance >= 0 down to p4 >= 0. Note, Gradual Viper can only return a
fresh value here, because the heaps do not contain a heap chunk recording a2.balance’s value
in the state. Unfortunately, this means Gradual Viper cannot prove a2.balance >= 0 holds as no
constraints exist for p4 in the path condition. But, this also means p4 >= 0 does not contradict
existing information in the path condition. So, imprecision in the state can optimistically represent
p4 >= 0 and a run-time check for a2.balance >= 0 is generated as seen in Figure 9(c), lines 22–23.
A few things of note here:

—Run-time checks are originally computed in terms of symbolic values, e.g., p4 >= 0, but are
ultimately replaced with counterparts written in terms of program variables, e.g., a2.balance
>= 0. This replacement by the translate function in Gradual Viper simplifies the implementa-
tion of run-time checks for frontends like GVC0, which operate on program variables and
concrete values not symbolic values. The translate function uses mappings in the symbolic
heaps and store to reverse the symbolic execution. Special considerations are made for fresh
symbolic values like p4, aliasing between object values, and different variable contexts.

—On another note, if consuming acc(a1.balance) at the field assignment on line 20 did not
also consume the heap chunk for a2.balance, then the run-time checks for acc(a2.balance)
and a2.balance >= 0 would not be necessary. Gradual Viper conservatively assumed a1
and a2 were aliased at the consume, so it removed both chunks from the state. However, in
practice a1 and a2 are likely to be distinct objects; and in fact, folding positive(a1) then
positive(a2) is a good sign the developer of withdraw expects a1 and a2 to be distinct. In this
case, a2.balance’s heap chunk does not need to be removed making the aforementioned run-
time checks unnecessary. Unfortunately, since we designed Gradual Viper to be conservative,
these run-time checks are only eliminated when the developer explicitly specifies that a1 and
a2 are not aliased, such as in the precondition of withdraw. Future work should explore ways
in which Gradual Viper can be less conservative at consumes.

—While it does not happen here in our withdraw example, there may be times where parts
of a symbolic, Boolean expression are proven statically and the rest optimistically. In this
case, Gradual Viper rewrites the expression into Conjunctive Normal Form (CNF) and
computes the conjuncts in this form that cannot be proven statically by the path condition.
These conjuncts (after translation) will then be checked at run time. We call this process
computing the difference between the expression and the path condition, and it results in
minimized run-time checks given statically available information.

Finally, a heap chunk for positive(a2) (e.g., positive(t2)) is produced into the heap resulting
in the final form of the state in Figure 9(c), lines 22–23.

Return Value Assignment. Then, Gradual Viper reaches the variable assignment on line 23, which
assigns a1 to res—the return value of withdraw. Gradual Viper first looks up the symbolic value
t1 for a1 and then the symbolic value t3 for res in the variable store. Gradual Viper stores the
information t3 = t1 from the assignment in the path condition resulting in the next symbolic
state in Figure 9(c), lines 23–24.

Consuming a Postcondition. Finally, Gradual Viper reaches the end of withdraw down its one and
only execution path on line 24. So the last thing Gradual Viper must do to verify the function is to con-
sume the postcondition ?&& acc(positive(a2)) && acc(positive(res)) (lines 12–13) in the cur-
rent symbolic state (Figure 9(c), lines 23–24). Gradual Viper begins by first consuming positive(a2)
then positive(res). The heap chunk for positive(a2) is in the heap, so no run-time check is
needed for it. Then positive(t2) is removed from the heap leaving both symbolic heaps empty. As
a result (and because the state is imprecise), consuming positive(res) in the next step results in

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:21

a run-time check for the predicate as seen in the final set of run-time checks required for withdraw
given in Figure 9(c), line 24. Note, consuming acc(positive(a2)) && acc(positive(res)) re-
quires both consuming the predicates individually (which we’ve done) and ensuring that one pred-
icate does not access heap locations overlapping with the other (in adherence with the separating
conjunction &&). Unfortunately, the state does not contain enough information to prove this fact stat-
ically, e.g., only the heap chunk for positive(a2) appears in the heap, but the state is imprecise! So
when Gradual Viper optimistically assumes positive(res) holds, it also assumes positive(res)
is separated from positive(a2). Gradual Viper flags positive(res)’s run-time check with this
additional check for GVC0 to handle. Additionally, after consuming the static part of an imprecise
formula, e.g., acc(positive(a2)) && acc(positive(res)) in withdraw’s postcondition, Gradual
Viper makes the state imprecise and empties both symbolic heaps. The ? in the imprecise formula
can represent any permission available in the state, so they must be removed by consume.

Takeaways. To summarize, Gradual Viper statically verifies the withdraw function successfully,
and produces run-time checks for acc(a2.balance) before line 20, a2.balance >= 0 also before
line 20, and positive(res) at the end of withdraw (line 24). The withdraw function will be
completely verified if these checks succeed at run time. During our discussion of the withdraw
function, we highlighted a number of technical challenges addressed and solutions developed
related to designing and implementing Gradual Viper. One of our goals was for Gradual Viper
to minimize run-time checks with statically available information. For this we introduced the
optimistic heap, which tracks heap chunks that are optimistically assumed during static verification
and can be soundly used to reduce run-time checking in successive program statements from
where they originated. In withdraw, we saw the heap chunks for a1.balance and a2.balance,
which were added to the optimistic heap during the production of geqTo(a1,a2)’s body (line
15), be used to eliminate duplicate run-time checks at the assignment on line 19. We had to make
careful considerations for the separating conjunction and removal of heap chunks at consumes to
ensure sound tracking of heap chunks in the optimistic heap. We also defined and implemented the
diff function, which utilizes CNF to optimize run-time checks for Boolean expressions. Finally,
Gradual Viper conservatively removes heap chunks from the symbolic heaps that may alias with
other heap chunks removed at a consume. We saw in withdraw that this comes at the cost of
additional run-time checks: Consuming a1.balance’s heap chunk at the field assignment on line
20 also consumed a2.balance’s heap chunk resulting in run-time checks for acc(a2.balance) and
a2.balance >= 0 before line 20. Our strategy is a sound basis for which future work can explore
further optimizations.

Another goal for Gradual Viper is for it to use symbolic execution for static reasoning. We
accomplished this goal, but not without dealing with some technical challenges. Symbolic execution-
based static verifiers generate and discharge proof obligations written in terms of symbolic values,
causing Gradual Viper, which extends this system, to follow suit. As a result, Gradual Viper
naturally generates run-time checks written in terms of symbolic values as well. Unfortunately,
dynamic verifiers only operate on program variables and concrete values not symbolic ones. To
bridge this gap between the static and dynamic systems, we implemented a translate function
in Gradual Viper that rewrites run-time checks containing symbolic values to ones containing
program variables and concrete values while being careful about aliases. Finally, execution splitting
at branch points led to some trickiness in gradual verification. Different run-time checks may
appear at the same program point along different execution paths, so we augmented Gradual Viper
to attach branching information to run-time checks. We also augmented Gradual Viper to be more
optimistic about verification success when dealing with failing execution paths in the presence of
imprecision. This was done in compliance with the gradual guarantee [Wise et al., 2020].

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:22 J. DiVincenzo et al.

4.3 Gradual Viper: Implemented Algorithm
In this section, we formalize the symbolic execution algorithm implemented by Gradual Viper.
A high-level description of how it works is given in Section 4.2. Our algorithm extends Viper’s
symbolic execution algorithm, and so Gradual Viper’s design is heavily influenced by the work
of Müller et al. [2016]. Like Viper, Gradual Viper’s algorithm consists of four major functions:
eval, produce, consume, and exec. The functions evaluate expressions, produce (inhale) and con-
sume (exhale) formulas, and execute program statements, respectively. Following Viper’s lead, our
four functions are defined in continuation-passing style, where the last argument of each of the
aforementioned functions is a continuation& . The continuation is a function that represents the re-
maining symbolic execution that still needs to be performed. Note that the last continuation returns
a Boolean (__.success() or __.failure()), indicating whether or not symbolic execution was
successful.

The rest of this section is outlined as follows. Run-time checks and the collections that hold them
are described in Section 4.3.1. We described symbolic states in Section 4.3.2 and preliminaries in
Section 4.3.3. The definitions for terms and types for functions described in Sections 4.3.1 to 4.3.3
are given collectively in Figure 10. Finally, the four major functions of our algorithm are given in
their own sections: eval (Section 4.3.4), produce (Section 4.3.5), consume (Section 4.3.6), and exec
(Section 4.3.7). Throughout this section, we make clear where Viper has been extended to support
imprecise formulas with yellow highlighting in figures. We also use blue highlighting to indicate
extensions for run-time check generation and collection.

4.3.1 Run-time Checks. Run-time checks produced by Gradual Viper are collected in the ℜ

set. A run-time check is a 4-tuple (bcs2 , origin2 , location2 , q2 ), where bcs2 is a set of branch
conditions, origin2 and location2 denotewhere the run-time check is required in the program, and
q2 is what must be checked. A branch condition in bcs2 is also a tuple of (origin4 , location4 , 4),
where origin4 and location4 define the program location at which Gradual Viper’s execution
branches on the condition 4 . A location is the AST element in the program where the branch or
check occurs, denoted as a formula q; . Sometimes, the condition being checked is defined elsewhere
in the program (e.g., in the precondition of a method) but we need to relate it to the method
being verified. The origin is used to do this. It is none when the condition is in the method being
verified; otherwise, it contains a method call, fold, unfold, or special loop statement from the method
being verified that referenced the check specified in the location. An example run-time check is:
({(none, G > 2,¬(G > 2))}, I :=<(~), acc(~.5 ), acc(~.5 )). The check is for accessing ~.5 , and it is
required for<’s precondition element acc(~.5 ) at the method call statement I :=<(~). The check
is only required when ¬(G > 2), which is evaluated at the program point where the AST element
G > 2 exists. Since ¬(G > 2)’s origin is none, it comes from an if or assert statement.

Further, R is used to collect run-time checks down a particular execution path in Gradual Viper.
R is a 3-tuple (bcs? , origin? , rcs? ) where bcs? is the set of branch conditions collected down
the execution path ? , origin? is the current origin that is set and reset during execution, and
rcs is the set of run-time checks collected down ? . Two auxiliary functions are used to modify
R: addcheck and addbc. The addcheck function takes an R collection R0A6, a location q; for a
check, and the check itself, and returns a copy of R0A6 with the run-time check added to R0A6 .rcs.
If necessary, addcheck uses R0A6 .origin and substitution to ensure q; and the check refer to the
correct context. For example, let q; and check q2 come from asserting a precondition for I :=<(~).
Then, addcheck performs the substitutions: q; [C ↦→<0A6] (precondition declaration context) and
q2 [C ↦→ ~] (method call context) where C is the symbolic value for ~. The addbc function operates
similarly to addcheck but for branch conditions.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:23

Fig. 10. Definitions for terms and types for functions described in Sections 4.3.1 to 4.3.3.

4.3.2 Symbolic State. We use f ∈ Σ to denote a symbolic state, which is a 6-tuple
(isImprecise, ℎ?, ℎ,W, c,R) consisting of a Boolean isImprecise, a symbolic heap ℎ?, another

symbolic heap ℎ, a symbolic store W , a path condition c , and a collection R (defined in Section 4.3.1).
The Boolean isImprecise records whether or not the state is imprecise, the symbolic store W maps
local variables to their symbolic values, the path condition c (defined in Section 4.3.3) contains

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:24 J. DiVincenzo et al.

constraints on symbolic values that have been collected on the current verification path, and R
contains the run-time checks that have been collected on the current verification path.

A symbolic heap is a multiset of heap chunks for fields or predicates that are currently accessible.
A field chunk 83(A ; X) (representing expression A .83) consists of the field name 83 , the receiver’s
symbolic value A , and the field’s symbolic value X—also referred to as the snapshot of a heap chunk.
For a predicate chunk 83(0A6B; X), 83 is the predicate name, 0A6B is a list of symbolic values that are
arguments to the predicate, and X is the snapshot of the predicate. A predicate’s snapshot represents
the values of the heap locations abstracted over by the predicate. The symbolic, optimistic heap
ℎ? contains heap chunks that are accessible due to optimism in the symbolic execution, while ℎ
contains heap chunks that are statically accessible. Further, only ℎ maintains the invariant that
its heap chunks are separated in memory, and thus, can be joined successfully by the separating
conjunction. The empty symbolic state is
f0 = (isImprecise := false, ℎ? := ∅, ℎ := ∅, W := ∅, c:= ∅, R := (∅, none, ∅)).

4.3.3 Preliminaries. We introduce a few preliminary definitions here that will be helpful later. A
path condition c is a stack of tuples (83, 12, ?2B). An 83 is a unique identifier that determines the
constraints on symbolic values that have been collected between two branch points in execution.
The 12 entry is the symbolic value for the branch condition from the first of two branch points, and
?2B is the set of constraints that have been collected. Branch points can be from if statements and
logical conditionals in formulas. Functions pc-all, pc-add, and pc-push manipulate path conditions
and are formally defined in Appendix, Figure A1. The pc-all function collects and returns all the
constraints in c , pc-add adds a new constraint to c , and pc-push adds a new stack entry to c .
Similarly, snapshots for heap chunks have their own related functions: unit, pair, first, and second.
The constant unit is the empty snapshot, pair constructs pairs of snapshots, and first and second
deconstruct pairs of snapshots into their subparts. Further, fresh is used to create fresh snapshots,
symbolic values, and other identifiers depending on the context. The havoc function similarly
updates a symbolic store by assigning a fresh symbolic value to each variable in a given collection
of variables. Finally, check(c, C) = pc-all(c) ⇒ C queries the underlying SAT solver to see if the
given constraint C is valid in a given path condition c (i.e., c proves or implies C ).

4.3.4 Symbolic Execution of Expressions. The symbolic execution of expressions by the eval
function is defined in Figure 11. Using the current symbolic state, eval evaluates an expression
to a symbolic value C and returns C and the current state to the continuation & . Variable values
are looked up in the symbolic store and returned. For >? (4), its arguments 4 are each evaluated to
their symbolic values C . A symbolic value >?′ (C) is then created and returned with the state after
evaluation. Each >? has a corresponding symbolic value >?′ of the same arity. For example, 41 + 42
results in the symbolic value 033 (C1, C2) where 41 and 42 evaluate to C1 and C2, respectively.

Finally, the most interesting rule is for fields 4.5 . The receiver 4 is first evaluated to C resulting in a
new state f2. Then, eval looks for a heap chunk for C .5 first in the current heap ℎ.8 If a chunk exists,
then the heap read succeeds and f2 and the chunk’s snapshot X is returned to the continuation.
If a chunk does not exist in ℎ, then eval looks for a chunk in the optimistic heap ℎ?, and if found
the chunk’s snapshot is returned with f2. If a heap chunk for C .5 is not found in either heap, then
the heap read can still succeed when f2 is imprecise. As long as C ≠ null does not contradict the
current path condition f2 .c (the call to assert, Appendix, Figure A8), f2’s imprecision optimistically
provides access to C .5 . Therefore, a run-time check for acc(4C .5 ) is created and added to f2’s set of
run-time checks (highlighted in blue). Note that 4C .5 is used in the check rather than C .5 , because—
unlike C which is a symbolic value—the expression 4C can be evaluated at run time. Specifically,

8Heap lookup in eval also looks for heap chunks that are aliases (according to the path condition) to the chunk in question.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:25

Fig. 11. Rules for symbolically executing expressions.

translate (described in Appendix, Figure A5) is called on C with the current state f2 to compute 4C .
Additionally, the AST element 4.5 is used to denote the check’s location.

Afterwards, a fresh snapshot X is created for C .5 ’s value, and a heap chunk 5 (C ; X) for C .5 and X
is created and added to f2’s optimistic heap passed to the continuation. Similarly, the constraint
C ≠ null is added to f2’s path condition. By adding 5 (C ; X) to the optimistic heap, the following
accesses of C .5 are statically verified by the optimistic heap, which reduces the number of run-time
checks produced. Finally, verification of the heap read for C .5 fails when none of the aforementioned
cases are true. Figures A2 and A3 in the Appendix define variants of eval, called eval-p and eval-
c, that are used in produce and consume, respectively. The eval-p variant does not introduce
run-time checks and eval-c does not extend the optimistic heap and path condition, because the
aforementioned functionalities are not needed in these contexts.

4.3.5 Symbolic Production of Formulas. Produce (Figure 12) is responsible for adding information
to the symbolic state, in particular, the path condition and the heap ℎ. Producing an imprecise
formula makes the symbolic state imprecise. The produce rule for an expression 4 evaluates 4
to its symbolic value and produces it into the path condition. The produce rules for accessibility
predicates containing fields and predicates are similar, so we focus on the rule for fields only. The
field 4.5 in acc(4.5 ) first has its receiver 4 evaluated to a symbolic value C . Then, using the parameter
X a fresh heap chunk 5 (C ; X) is created and added to the heap before invoking the continuation.
Note, the disjoint union ] ensures 5 (C ; X) is not already in the heap before 5 (C ; X) is added;
otherwise, verification fails. Further, acc(4.5 ) implies 4 ≠ null and so that fact is recorded in the
path condition as C ≠ null. When the separating conjunction q1 && q2 is produced, q1 is first
produced into the symbolic state, followed by q2. Finally, to produce a conditional, Gradual Viper
branches on the symbolic value C for the condition 4 splitting execution along two different paths.
Along one path q1 is produced into the state under the assumption that C is true, and along the
other path q2 is produced under the ¬C assumption. Both paths follow the continuation to the end

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:26 J. DiVincenzo et al.

Fig. 12. Rules for symbolically producing formulas.

Fig. 13. Formally defining the branch function.

of its execution, and a branch condition corresponding to the C assumption made is added to the
symbolic state. Paths are pruned when they are infeasible (the assumption about C would contradict
the current path conditions). Overall verification success is computed from the results of the two
execution paths, and an imprecise state allows this computation to be optimistic when one path
successfully verifies and the other doesn’t. In this case, branch optimistically marks verification a
success when normally it should fail, because the state may optimistically contain information that
prunes the failure case. A run-time check is then added for the success path’s condition to ensure
soundness. This functionality is important for adhering to the gradual guarantee [Wise et al., 2020].
The formal definition of branch is in Figure 13, and other details for branch and produce are given
in Appendix A.2. Note, produce only adds run-time checks for branching to the symbolic state.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:27

Fig. 14. Select rules for symbolically consuming formulas.

4.3.6 Symbolic Consumption of Formulas. The goals of consume are 3-fold: (1) given a symbolic
state f and formula q̃ , check whether q̃ is established by f , i.e., q̃f ⇒̃ q̃ where q̃f is the formula
which represents the state f , (2) produce and collect run-time checks that are minimally sufficient
for f to establish q̃ soundly, and (3) remove accessibility predicates and predicates that are asserted
in q̃ from f . The rules for consume are given in full and described in great detail in Appendix A.3.
We give select rules in Figure 14 and an abstract description here.

The functionality of consume is split across two functions: consume, which is the interface
to consume accepting only a state, formula, and continuation, and consume’, which is a helper

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:28 J. DiVincenzo et al.

function performing consume’s major functionality. Note, before calling consume’, consume first
adds non-alias information from the heap to the path condition and checks that the heap and path
condition are noncontradictory using consolidate [Schwerhoff, 2016].

Then, the two functions work together to accomplish the aforementioned goals. For the first and
second goals, heap chunks representing accessibility predicates and predicates in q̃ are looked up
in the heap ℎ and optimistic heap ℎ? from f . When f is precise, the heap chunks must be in ℎ or
verification fails. If f is imprecise, then the heap chunks are always justified either by the heaps
or imprecision. Run-time checks for heap chunks that are verified by imprecision are collected
in f.R. The consume’ rule for acc(4.5 ) (and the rule for acc(? (4)) which is similar) supports this
functionality by calling heap-rem-acc (defined in Appendix, Figure A7) for the look-up, assigning
the Boolean results to 11 and 12, and then using them in if-then-else and else-if casing. The
blue highlighting in the isImprecise is true case in the aforementioned rule handles the run-time
checks. Clauses in q̃ containing logical expressions are first evaluated to a symbolic value C , which
is then checked against f’s path condition c . If f is precise, then pc-all(c) ⇒ C must hold (i.e.,
the constraints in c prove C ) or verification fails. In contrast, when f is imprecise,

∧
pc-all(c)∧ C

must hold (i.e., C does not contradict constraints in c ) otherwise verification fails. In this case, a
run-time check is added to f.R for the set of residual symbolic values in C that cannot be proved
statically by c . The consume’ rules for expressions and symbolic values implement this behavior.
The call to assert (defined in Appendix, Figure A8) checks C against c and returns the result and
any residual symbolic values. Note, assert uses diff from Appendix A.1 to compute the residuals.
The part highlighted in blue adds the run-time check for the residuals to the state. Finally, fields
used in q̃ must have corresponding heap chunks in ℎ when f and q̃ are precise; otherwise when
f or q̃ are imprecise, field access can be justified by either the heaps or imprecision. A run-time
check containing an accessibility predicate for the field is added to f.R when imprecision is relied
on. This is all handled by the second argument 5? to consume’ and eval-c called by consume’ on
expressions.

The third goal of consume is to remove heap chunks ℎ28 representing accessibility predicates
and predicates in q̃ from f , and in particular, from heaps ℎ and ℎ?. When f and q̃ are both precise,
the heap chunks in ℎ28 are each removed from ℎ (ℎ? is empty here). If q̃ is imprecise, then all heap
chunks in both heaps are removed as they may be in ℎ28 or q̃ may represent them with imprecision.
Finally, when f is imprecise and q̃ is precise, any heap chunks in ℎ or ℎ? that overlap with or
may potentially overlap with (thanks to f’s imprecision) heap chunks in ℎ28 are removed. The
calls to heap-rem-acc (and its counterpart heap-rem-pred) in consume’, the extra heaps tracked
in consume’, and the heap assignments in the continuations from consume come together to
implement heap chunk removal.

4.3.7 Symbolic Execution of Statements. The exec rules in Gradual Viper, which symbolically
execute program statements, are largely unchanged from Viper. The only differences are (1) the
rules now utilize versions of eval, produce, consume, and branch defined previously in this article
and (2) the rules track origins where appropriate. To provide an intuition, select rules for exec
are given in Figure 15; the full set of rules are listed in Appendix A.4. The exec function takes a
symbolic state f , program statement BC<C , and continuation & . Then, exec symbolically executes
BC<C using f to produce a potentially modified state f ′, which is passed to the continuation.

Symbolic execution of field assignments first evaluates the right-hand side expression 4 to the
symbolic value C . Any field reads in 4 are either directly or optimistically verified using f1. Then,
the resulting state f2 must establish write access to G .5 in consume, i.e., f2 ⇒̃ acc(G .5 ). Calling
consume also removes the field chunk for acc(G .5 ) from f2 (if it is in there) resulting in f3. Therefore,

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:29

Fig. 15. Select rules for symbolically executing program statements.

the call to produce can safely add a fresh field chunk for acc(G .5 ) alongside G .5 = C to f3 before
it is passed to the continuation & . Under the hood, run-time checks are collected and passed to & .

The method call rule evaluates the arguments 4 to symbolic values C , consumes the method
precondition (substituting arguments with C ) while making sure the origin is set properly for check
and branch condition insertion, havocs existing assumptions about the variables being assigned
to, produces knowledge from the postcondition, and finally continues after resetting the origin to
none. An in-depth explanation is in the Appendix, along with the other exec rules and equi-imp
definition.

Note that while Gradual Viper treats predicates iso-recursively in all other cases, it makes an
exception when consuming preconditions at method calls (and loop invariants before entering
loops), which can be seen in the if-then in the method call rule (Figure 15). If Gradual Viper
determines the precondition (invariant) is equi-recursively imprecise (using equi-imp, Appendix,
Figure A10), then it will conservatively remove all the heap chunks from both symbolic heaps and
make the state imprecise after the consume. This exception ensures the static verification semantics
in Gradual Viper lines up with the equi-recursive, dynamic verification semantics encoded by GVC0
(described in Section 4.4) such that Gradual C0 is sound. Interestingly, the gradual verifier of Wise
et al. [2020] does not need this special case, because it does not optimize run-time checks with
statically available information. Once optimization is introduced, the semantics across the two
systems need to be more tightly integrated to ensure soundness. Zimmerman et al. [2024] alerted
us to this issue and proposed the aforementioned solution.

4.3.8 Valid Gradual Viper Programs. Finally, putting everything together, a Gradual Viper
program is checked by examining each of its method and predicate definitions to ensure they
are well-formed (formally defined in Appendix, Figure A11). The formal definitions are given in
Figure 16, and a more detailed description of the rules is given in Appendix A.5. Intuitively, for each
method, we define symbolic values for the method arguments, and then create an initial symbolic
state by calling the produce function on the method precondition.9 We then call the exec function
on the method body, which symbolically executes the body and ensures that all operations are valid
based on that precondition. Finally, we invoke the consume function on the final symbolic state
and the postcondition, verifying that the former implies the latter. Throughout these operations a
9Note, produce is part of well-formed.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:30 J. DiVincenzo et al.

Fig. 16. Rules defining a valid Gradual Viper program.

set of run-time checks is built up, which (along with success or failure) is the ultimate result of
gradual verification.

4.4 Dynamic Verification: Encoding Run-time Checks into C0 Source Code
After static verification, Gradual Viper returns a collection of run-time checks ℜ that are required
for soundness to GVC0. Then, GVC0 creates a C0 program from the run-time checks in ℜ and the
original C0 program by encoding the checks in C0 source code. The C0 program is sent to the C0
compiler to be compiled, executed, and thus dynamically verified. We chose to encode the run-time
checks directly in source code to avoid complexities from augmenting the C0 compiler with support
for dynamic verification. Further, since C0 is a simple imperative language, any more expressive
language should be able to encode the checks far more easily. That is, we hope this work serves as
a guide to the developers of Gradual Viper frontends for other languages on how to implement
efficient dynamic verification for gradual verification—especially, when modifying the compiler for
their language is difficult. The rest of this section illustrates GVC0’s encoding of run-time checks
into C0 source code via example. We also highlight design points in the encoding that minimize
run-time overhead of the checks during execution.

Now, consider the C0 program in Figure 17 that implements a method for inserting a new
node at the end of a list, called insertLastWrapper. Note, when passed a non-empty list,
insertLastWrapper calls insertLast from Figure 1 to perform insertion (line 17). Here,
insertLast is gradually verified with the simpler and fully specified (precise) acyclic predicate
given on lines 1–4 in Figure 17. For our purposes, we only need to know that insertLast’s precon-
dition is ? && acyclic(list) && list != NULL and its postcondition is acyclic(\result) &&
\result != NULL. The insertLastWrapper method is also gradually specified: Its precondition
is ? (line 7)—requiring unknown information—and its postcondition is acyclic(\result) (line
8)—ensuring the list after insertion is acyclic. Figure 17 also contains run-time checks generated
by Gradual Viper for insertLastWrapper, as highlighted in blue. The first check (lines 15–16)
ensures the list l sent to insertLast (line 17) is acyclic, and is only required when l is non-empty
(non-null). The second check (lines 20–21) ensures the list returned from insertLastWrapper is
acyclic, and is only required when insertLastWrapper’s parameter l is empty (null). These checks
are not executable by the C0 compiler; therefore, GVC0 takes the program and checks in Figure 17
and returns the executable program in Figure 18. That is, GVC0 encodes branch conditions (lines
15 and 20), predicates (lines 16 and 21), accessibility predicates (acc(l->val) and acc(l->next)
in acyclic’s body, lines 1–4), and separating conjunctions (also in acyclic’s body) from Gradual

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:31

Fig. 17. Original insertLastWrapper program
with run-time checks from Gradual Viper. Fig. 18. GVC0 generated insertLastWrapper

program with run-time checks.

Viper into C0 source code. We discuss the aforementioned encodings in Sections 4.4.1 to 4.4.3,
respectively. While not in the insertLastWrapper example, GVC0 translates checks of simple
logical expressions into C0 assertions: e.g., assert(y >= 0);.

4.4.1 Encoding Branch Conditions. Run-time checks contain branch conditions that denote the
execution path for which a check is required. For example, in Figure 17 acyclic(\result) should
only be checked at lines 20–21 when l == NULL, as indicated by the branch condition (none,l
== NULL,l == NULL). Therefore, GVC0 first encodes the condition l == NULL into C0 code. In
general, conditions are encoded as logical expressions in C0 and assigned to fresh Boolean variables
at the program point where they originated—we call this versioning. Then, the Boolean variable
is used in checks in place of the condition. For example, the origin and location pair (none,l ==
NULL) tells GVC0 that l == NULL must be evaluated at the program point in insertLastWrapper
containing the l == NULL AST element. As a result, in Figure 18 a Boolean variable _cond is
introduced on line 4 to hold the value of l == NULL. The condition variable _cond is then used in
the C0 run-time check for acyclic(\result) later in the program (line 17). To reduce run-time
overhead, _cond is also used in the check for acyclic(l) on line 12, which relies on the same
branch point (none,l == NULL). Further, while not demonstrated here, GVC0 adds guards so that
the versioned conditions are false if evaluating the path condition would result in a null dereference.

4.4.2 Encoding Predicates. Now that GVC0 has versioned the branch conditions in Figure 17
into variables, GVC0 can use the variables to develop C0 run-time checks. The Gradual Viper check
({(none,l == NULL,¬(l == NULL))}, (l=insertLast(l,val),acyclic(l),acyclic(l))) is
translated into if (!_cond) {assert_acyclic(l,_owned);} on line 12 in Figure 18. GVC0 places
this C0 check according to the origin, location pair ((l=insertLast(l, val),acyclic(l))),
which points to the program point just before the call to insertLast on line 15. The branch con-
dition becomes the if statement with condition !_cond (Section 4.4.1), and acyclic(l) is turned

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:32 J. DiVincenzo et al.

into the C0 function call assert_acyclic(l,_owned). The assert_acyclic function implements
acyclic’s predicate body as C0 code: It asserts true for empty lists and recursively verifies accessi-
bility predicates (using _owned) for nodes in non-empty lists. That is, predicates are encoded and
treated equi-recursively by GVC0. For efficiency, separation of list nodes is encoded separately on
lines 13–14. We discuss the dynamic verification of accessibility predicates and the separating con-
junction in C0 code next (Section 4.4.3). Finally, a similar C0 check is created for acyclic(\result)
on lines 17–19. Note, our encoding of predicates, which turns them into Boolean functions in code,
is made possible by Gradual C0 not allowing existentials in its specification language.

4.4.3 Encoding Accessibility Predicates and Separating Conjunctions. GVC0 implements run-time
tracking of owned heap locations in C0 programs to verify accessibility predicates and uses of the
separating conjunction.

Encoding Owned Fields in C0 Source Code. An owned field is a tuple (83, field) where 83 is an
integer identifying a struct instance (object in C0) and field is an integer indexing a field in the
struct. The OwnedFields struct, which is implemented as a dynamic hash table to improve check
performance, contains currently owned fields. That is, hashed object identifiers (83) and then field
identifiers (field) are used to index into OwnedFields where a Boolean that determines whether
or not the field is currently owned is stored. Since objects are tracked with integers, all struct
definitions in a C0 program are modified to contain an additional _id field.

Semantics of Tracking Owned Fields (Inspired by Wise et al. [2020]). At the entry point to a
C0 program (e.g., main), an empty OwnedFields struct, which we call _owned, is allocated and
initialized. This is not shown in Figure 18. Then, when a new struct instance is created—such as
allocating a new node on line 6 in Figure 18—the _id field is initialized with the value of a global
counter _instCtr that uniquely identifies the instance (lines 7–8). The call to library function
runtime_addAll on line 9 adds all fields in the struct instance (e.g., l->val:(l->_id,0) and l-
>next:(l->_id,1)) to _owned and marks them as owned. The only other times _owned can change
are at method/function calls and loops. Methods (loops), like insertLast and insertLastWrapper,
may add or drop owned fields during their executions. They may also contain run-time checks,
such as the one for acyclic(l) on line 12, that need owned fields for verification. So, GVC0 adds
an additional parameter to their declarations (e.g., line 2, Figure 18) to accept, initialize, and then
modify _owned in their contexts. A callee’s pre- and postcondition (a loop’s invariant) controls what
owned fields are passed to and from the callee (loop body) via this new parameter. When a method’s
precondition (loop’s invariant) is imprecise, then any caller (program before loop execution) will
pass all of its owned fields to the method (loop), as on line 15 for the call to insertLast. Note,
here, a formula is also imprecise if it contains predicates that expose ? when fully unrolled—an
equi-recursive treatment appropriate for dynamic systems [Wise et al., 2020] (this is in contrast with
the iso-recursive treatment in Gradual Viper, see Section 4.2 for more information). After execution,
the callee method (loop body) returns all of its owned fields to the caller (program after the loop).
When a method’s precondition (loop’s invariant) is precise, then any caller (program before the
loop) only passes its owned fields specified by the precondition (invariant) to the method (loop
body). If the method’s postcondition is imprecise, then after execution the callee method returns all
of its owned fields as before; otherwise, only the owned fields specified by the postcondition (loop
invariant) are returned. Finally, as an optimization, in precisely specified (no external—pre- and
postconditions—or internal—loop invariants, unfolds, folds, etc.—specifications contain imprecision
and no run-time checks are required) methods (loops), GVC0 does not implement any tracking
of owned fields. In this case, GVC0 uses the callee’s pre- and postcondition (loop’s invariant) to
modularly update _owned in the caller (program outside the loop).

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:33

Verifying Accessibility Predicates and Separating Conjunctions with Owned Fields. Now, _owned is
used to verify accessibility predicates and uses of the separating conjunction. Run-time checks for
accessibility predicates are turned into assertions that ensure the presence of their heap location in
_owned. For example, acc(l->val) looks like runtime_assert(_owned,l->_id,0); in C0 code,
where 0 is the index for val in the Node struct. The runtime_assert library function indexes into
_owned using l->_id and 0 and ensures the corresponding flag is true; otherwise, runtime_assert
throws an error. Wherever GVC0 must check separation of heap locations (as indicated in runtime
checks from Gradual Viper via a flag)10—such as for the nodes in list l at lines 12–14—it creates
(with the library method run-time_init) a new (empty) instance _temp of OwnedFields. We
check that heap cells are disjoint by adding them one at a time to _temp and failing if the cell has
been already added. GVC0 generates a add_X method for each predicate X to actually perform this
operation; when done, it discards _temp, as its only purpose is to check separation. Similar checks
are created for the acyclic(\result) check on lines 17–19.

4.5 Gradual C0 Soundness
Gradual C0 adheres to the following informal soundness statement:

For a C0 program ? , if the symbolic execution algorithm in Gradual Viper succeeds for the Gradual
Viper version of ? , the run-time checks produced by Gradual Viper are inserted by GVC0 into ? ,
and the run-time checks are assumed to succeed, then when executed ? is guaranteed to not step
into an invalid state with respect to its specifications and IDF-styled heap ownership.

Put another way, all violations of a C0 program’s specifications and all violations of heap ownership
by the program code will be caught either statically (by Gradual Viper) or dynamically (by GVC0 ).
A formal statement of soundness for Gradual C0 with proof is given by Zimmerman et al. [2024].
Note, Zimmerman et al. [2024] formalize Gradual C0’s symbolic execution algorithm in sets of
inference rules, rather than in CPS-style (as in this work) to facilitate stating and proving soundness.

5 Empirical Evaluation
The seminal work on gradual typing [Siek and Taha, 2006] selectively inserts run-time casts in
support of optimistic static checking: For instance, whenever a function application is deemed
well-typed only because of imprecision—such as passing an argument of the unknown type to
a function that expects an integer—the type-directed cast insertion procedure inserts a run-time
check. But if the application is definitely well-typed, no cast is inserted. This approach ensures that
a fully precise program does not incur any overhead related to run-time type checking. While it
is tempting to assume that more precision necessarily results in better performance, the reality
has been shown to be more subtle: Both the nature of the inserted checks (such as higher-order
function wrappers) and when/how often they are executed is of utmost importance [Muehlboeck
and Tate, 2017; Takikawa et al., 2016], and anticipating the performance impact of precision is
challenging [Campora et al., 2018].

The performance of gradual verification has never been studied until now, due to the lack of
a working gradual verifier. Here, we explore the relation between minimizing dynamic check
insertion with statically available information and observed run-time performance in gradual
verification with Gradual C0. Specifically, we explore the performance characteristics of Gradual
C0 for thousands of partial specifications generated from four data structures, as inspired by the
work of Takikawa et al. [2016] in gradual typing. In particular, we observe how adding or removing
individual atomic formulas and ? within a specification impacts the degree of static and dynamic

10Note, this flag is not formalized in this article for simplicity.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:34 J. DiVincenzo et al.

verification and, as a result, the run-time overhead of the program. Additionally, we compare the
run-time performance of Gradual C0 to a fully dynamic approach, as readily available in C0. The
aforementioned ideas are captured in the following ResearchQuestions (RQs):

RQ1:As specifications are made more precise, can more verification conditions be eliminated
statically?

RQ2:Does gradual verification result in less run-time overhead than a fully dynamic approach?
RQ3:Are there particular types of specification elements that have significant impact in run-time

overhead, and can high overhead be avoided?

A reproducibility package for the evaluation presented in this section can be found in the
supplementary material for this article.

5.1 Creating Performance Lattices
We define a complete specification as being statically verifiable when all ?s are removed, and then
a partial specification as a subset of formulas from a complete specification that are joined with
?. Like Takikawa et al. [2016], we model the gradual verification process as a series of steps from
an unspecified program to a statically verifiable specification where, at each step, an element is
added to the current, partial specification. An element is an atomic conjunct (excluding Boolean
primitives) in any type of method contract, assertion, or loop invariant. We form a lattice of partial
specifications by varying which elements of the complete specification are included. We also
similarly vary the presence of ? in formulas that are complete—contain the same elements as their
counterparts in the statically verifiable specification—and have related fold and unfold statements
in the partial specification. Otherwise, ? is always added to incomplete formulas. This strategy
creates lattices where the bottom entry is an empty specification containing only ?s and the top
entry is a statically verifiable specification. A path through a lattice is the set of specifications
created by appending = elements or removing ?s one at a time from the bottom to the top of the
lattice. The large array of partial specifications created in each lattice closely approximates the
positive specifications supported by the gradual guarantee [Wise et al., 2020], which are less precise
variants of successfully verified programs. For reference, we give a more formal statement of the
gradual guarantee:

Let ?1 and ?2 be Gradual C0 programs where ?1 v ?2 (i.e., the formulas in ?1 are more precise
than those in ?2). If ?1 statically verifies, then ?2 statically verifies. Additionally, ?2 must execute
at least as far as ?1 executes at run time.

Now, to illustrate the aforementioned approach, consider the following loop invariant:

//@ loop_invariant sortedSeg(list , curr , curr ->val) && curr ->val <= val;

The invariant is made of two elements: the sortedSeg predicate instance and the Boolean expression
curr->val <= val;. The lattice generated for a program with this invariant has five unique
specifications: Four contain a combination of the two elements joined with ?, and the fifth is the
complete invariant above.

5.2 Data Structures
To apply this methodology, we implemented and fully specified four recursive heap data structures
with Gradual C0: Binary Search Tree (BST), sorted linked list, composite tree, and AVL tree.
Their implementations with specifications can be found in the supplementary material published
alongside this work. We chose these data structures because complete static specifications exist

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.

https://files.atypon.com/acm/f8a443ed0482de062a9f983f94e77416
https://files.atypon.com/acm/f8a443ed0482de062a9f983f94e77416


Gradual C0: Symbolic Execution for Gradual Verification 14:35

Table 1. Description of Benchmark Examples

Contents of Complete SpecExample Unverified Complexity # Specs Fold Unfold Pre. Post. Pred. Body Loop Inv.

BST $ (= ;>6 (=) ) 3,473 43 23 0/20/21/24 0/22/6/24 6/6/7/4 0/2/4/2
Linked List $ (=) 1,745 17 10 8/6/15/5 4/5/6/5 4/3/4/3 4/3/5/2
Composite $ (= ;>6 (=) ) 2,577 28 15 0/10/2/12 0/11/1/12 32/9/17/3 0/3/2/3
AVL $ (= ;>6 (=) ) 3,057 25 14 3/4/5/9 3/6/9/9 25/8/21/3 1/1/2/1

For each example, the table shows the complexity of the test program without verification, the number of
sampled partial specifications, and the distribution of specification elements for the complete specification.
Element counts are formatted as “Accessibility Predicate/Predicate Instance/Boolean Expression/Imprecision.”

for them in prior work and they are interesting use cases for gradual verification. Linked list is
implemented with a while loop rather than recursion. BST is a more complex data structure with
a more complex property (BST property) than a linked list and uses recursion. Composite tree
implements a structure where modifications do not have to start at the root, but can be applied
directly to any node in the tree. Its invariant also applies to any node in the tree. Finally, AVL tree
implements the most complex invariant (the balanced property) and data structure with many
interdependent functions and predicates related to tree rotations. Each data structure has a test
program that contains its implementation and a main function that adds elements to the structure
based on a workload parameter l . We design the test programs to incur as little run-time overhead
as possible outside of structure size and run-time checks. For each example and corresponding test
program, Table 1 displays the distribution of elements in the complete specification, as well as the
run-time complexity of the test program and the number of unique partial specifications generated
by our benchmarking tool.

BST. The implementation of the BST is typical; each node contains a value and pointers to left
and right nodes. We completely statically specify BST with required ownership specifications and
also to verify preservation of the BST property—that is, any node’s value is greater than any value
in its left subtree and less than any value in its right subtree. The test program creates a root node
with value l and sequentially adds and removes a set of l values in the range [0, 2l]. Note that
values are removed in the same order they were added.

Linked List. We implement a linked list with insertion similar to the one given in Figure 1.
Insertion is statically specified with heap ownership specifications as well as those denoting
preservation of list sortedness. Its test program creates a new list and inserts l arbitrary elements.

Composite. The composite data structure is a binary tree where each node tracks the size of its
subtree—this is verified by its specification along with its heap accesses. Its test program starts
with a root node and builds a tree of size l by randomly descending from the root until a node
without a left or right subtree is reached. A new node is added in the empty position, and then
traversal backtracks to the root.

AVL Tree. The implementation of AVL tree with insertion is standard except that the height of the
left and right subtrees is stored in each node (instead of the overall height of the tree). This allows us
to easily state the AVL balanced property—for every node in the tree the height difference between
its left and right children is at most 1—without using functions in specifications or the unfolding
p(4) in 4 construct [Müller et al., 2016], which Gradual C0 does not currently support (we discuss
this further in Section 5.5). In addition to specifying the AVL balanced property for insertion, we
also specify required ownership specifications. The AVL test program starts with a root node and
builds a tree of size l by inserting randomly valued nodes into the tree using balanced insertion.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:36 J. DiVincenzo et al.

5.3 Experimental Setup
With upwards of 100 elements in the specifications for each data structure, it is combinatorially
infeasible to fully explore every partial specification. Therefore, unlike Takikawa et al. [2016], we
proceed by sampling a subset of partial specifications in a lattice, rather than executing them
all. Specifically, we sample 16 unique paths through the lattice from randomized orderings of
specification elements. We chose partial specifications along lattice paths to explore trends in
migration from no specifications to complete specifications, which is how we imagine developers
may use our tool. We also randomly sampled paths, rather than using another heuristic, to be
prescriptive to users of Gradual C0. We wanted to find and recommend new specification patterns
that users should apply or avoid depending on their performance. Every step is executed with three
workloads chosen arbitrarily to ensure observable differences in timing. Each timing measurement
is the median of 50 iterations. Programs were executed on eight physical 13th Gen Intel i7-13700k 3.4
GHz Cores with 32 GB of RAM. Hyperthreading, turbo boost, and low-power cores were disabled.
Power management for the remaining cores was set to performance.

We introduce two baseline verifiers to compare Gradual C0 against. The dynamic verifier trans-
forms every specification into a run-time check and inserts accessibility predicate checks for field
dereferences—thereby emulating a fully dynamic verifier. The framing verifier only performs the
accessibility predicate checks, and therefore represents the minimal dynamic checks that must be
performed in a language that checks ownership.11 We implement the baseline verifiers ourselves
using the dynamic semantics of Wise et al. [2020], which checks everything at run time, as a guide.
The work byWise et al. [2020] is the only work that we are aware of that handles run-time checking
of both ownership and recursive predicates.

5.4 Evaluation
Figure 19 shows how the total number of verification conditions (proof obligations) changes as
more of each benchmark is specified (green curve). The figure also similarly shows the number of
verification conditions that are statically verified as each benchmark is specified (purple curve).
From the green curve, we see that even when there are no specifications, there are verification
conditions, e.g., before a field is accessed, the object reference must be non-null and the field must
be owned. Some of these verification conditions can be verified statically as illustrated by the purple
curve. As more of a benchmark is specified, there are more verification conditions (green curve); but
also, more of these verification conditions are discharged statically and do not have to be checked
dynamically (purple curve). Towards the right end of the plots, the two curves converge until they
meet when all the verification conditions are discharged statically. As a result, the answer to RQ1 is
yes. Note, the number of verification conditions does decrease when enough of the benchmark is
specified. This is due to being able to prune symbolic execution paths with new static information.

The plots in Figure 20 display the run-time performance (in red) of dynamically checking the
verification conditions from Figure 19. The plots also show how the run-time performance of the
dynamic verifier (in green) and framing verifier (in purple) change as more of each benchmark is
specified.The green lines show that as more properties are specified, the cost of run-time verification
increases. With Gradual C0, some of these properties can be checked statically; therefore, the run-
time cost of gradual verification, shown in red, starts equivalent but eventually ends up significantly
lower than the cost of pure run-time verification.

Notably, the purple lines are significantly lower than the red and greens ones until they exhibit
a dramatic increase starting at around 80% specified all the way to 100%. Eventually (after about
95% specified), the purple lines end above the red ones (but below the green ones) where running

11These framing checks could fail, for example, if some function lower in the call stack owns data that are accessed by the
currently executing function.
ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:37

Fig. 19. For each example, the average quantity of verification conditions and the subset that were eliminated
statically at each level of specification completeness across all paths sampled. Shading indicates the standard
deviation.

Fig. 20. The mean time elapsed at each step over the 16 paths sampled. Shading indicates the confidence
interval of the mean for each verification type.

time is orders of magnitude higher than at the start of the incline. The framing verifier (in purple)
only checks that heap accesses are safe—i.e., they are owned and their receivers are non-null.
So unsurprisingly, the dynamic and gradual verifiers, which check more properties like heap
separation, nearly always have significantly higher run-time verification overhead than the framing
verifier. Eventually, Gradual C0 outperforms the framing verifier when enough properties, including
framing, are checked statically.

The dramatic increase in the framing verifier’s run-time performance is caused by the owned
fields passing strategy employed at method boundaries and loops (described in Section 4.4.3) to
verify heap accesses at run time. To respect precondition (loop invariant) abstractions, only owned
fields specified by a callee’s precondition (loop’s invariant) are passed by the caller (program before
the loop) to the callee (loop body) when the precondition (invariant) is precise. Similarly, when
a callee’s postcondition (loop invariant) is precise, then only the owned fields specified by the
postcondition (invariant) are passed back to the caller (program after the loop). Computing owned
fields from precise contracts and loop invariants is costly, and even more-so for contracts and
loop invariants containing recursive predicates, like in our benchmarks. Further, our benchmarks
call such methods and loops frequently during execution. As a result, execution time increases
significantly at each path step where one of the aforementioned methods gets a precise pre- or
postcondition or loop gets a precise loop invariant from ? removal. This, of course, happens more
frequently as more of a benchmark is specified. At 100% specified, every method contract and loop
invariant is precise, and so the owned fields passing strategy is used at every method call and loop.
This leads to the highest run-time costs for the framing verifier. In contrast, Gradual C0 checks

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:38 J. DiVincenzo et al.

Table 2. Summary Statistics for the Performance of Each Example over 16 Paths at Selected
Workloads (l), Comparing Gradual Verification (GV) against Dynamic Verification (DV)

% ΔC , GV vs. DV % Steps GV < DV for Paths DV < GVExample l Mean SD Max Min Mean SD Max Min. % Paths GV < DV

32 −7.1 23.9 197.9 −87.5 56.7 17.8 85.9 24.6 0.0
64 −14.0 28.3 219.5 −95.7 66.9 20.4 90.6 30.4 0.0AVL
128 −15.9 31.7 194.7 −98.0 69.4 21.2 94.8 28.8 0.0
32 −25.9 27.2 13.7 −92.5 75.6 7.6 89.4 61.3 0.0
64 −27.8 30.5 25.5 −98.1 71.0 8.5 83.9 55.8 0.0BST
128 −26.1 33.2 51.4 −99.5 68.4 10.0 86.2 48.4 0.0
32 −16.3 23.5 18.5 −96.2 76.5 20.6 94.5 28.4 0.0
64 −22.4 28.5 28.9 −99.8 84.2 12.9 100.0 54.1 6.3Linked List
128 −25.0 29.7 40.4 −100.0 86.9 8.6 100.0 67.0 6.3
32 −37.7 34.4 21.4 −98.9 84.2 13.2 99.4 50.3 0.0
64 −39.4 35.8 41.2 −99.8 84.4 13.5 99.4 49.7 0.0Composite
128 −40.2 37.3 82.6 −100.0 85.8 11.7 98.8 62.1 0.0

The grouped column “% in ΔC , GV vs. DV” displays summary statistics for the percent decrease in time
elapsed for each step when using GV versus DV. The column “% Steps GV < DV for Paths DV < GV”
shows the distribution of steps that performed best under GV that were part of paths containing steps that
performed better under DV. The final column shows the percentage of paths in which every step performed
better under GV.

fully specified methods and loops completely statically and does not use the owned field passing
strategy for calls to these methods and loops. As a result, looking at the red lines, Gradual C0 is
not heavily affected by this phenomena—we see slight increases starting at 90% specified but they
are significantly less costly. Additionally, once a critical mass of specifications have been written,
Gradual C0’s run-time verification cost decreases until reaching zero—which is the same as running
the raw C0 version of the benchmark. If the spikes around 90% specified are too costly, production
gradual verifiers can reduce them by employing more optimal permission passing strategies.

In general, according to the red lines, Gradual C0’s performance increases gradually as more
proof obligations are specified but are not yet statically verified; and thus, must be checked at run
time. When a critical mass of specifications are written, more and more of these proof obligations
can be proven statically. This causes run-time performance to start to decrease until reaching
the spikes around 90% specified caused by owned fields passing. After the spikes, performance
decreases to the benchmark’s raw baseline. This trend is consistent with speculations made in the
work by Wise et al. [2020] and confirms that increasing precision in gradual verification does not
always correspond with decreased run-time overhead from dynamic verification.

Table 2 displays summary statistics for Gradual C0’s performance on every sampled partial
specification compared to the dynamic verification baseline. Depending on the workload and
example, Gradual C0 reduces run-time overhead by 7.1–40.2% on average (Table 2, Column 3)
compared to the dynamic verifier. Note that the speed-ups are consistent or increase as l increases:
−7.1%, −25.9%, −16.3%, and −37.7% at the lowest l values compared to −15.9%, −26.1%, −25.0%, and
−40.2% at the largest. While Gradual C0 generally improves performance, there are some outliers in
the data (Table 2, Column 5) where Gradual C0 is slower than dynamic verification by 13.7–219.5%.
Fortunately, for lattice paths that produce these poor-performing specifications, gradual verification
still outperforms dynamic verification (on average) for 56.7–86.9% (Table 2, Column 7) of all steps.
Further, the majority of these outliers appear under 50% specified. These outcomes are likely caused
by the bookkeeping we insert to track conditionals, which is unoptimized and could be improved,
and measurement error. Figure 20 displays the average run-time cost across all paths under each of
our benchmarks and verifiers. In all the plots, for some early parts of the path, the cost of Gradual C0
is comparable to or slightly exceeds the cost of the dynamic verifier. But after 50% completion, static
optimization kicks in, and Gradual C0 begins to significantly outperform it. Further, Table 2 shows

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:39

Fig. 21. The quantity of specification elements, grouped by type and location, that caused the highest (P99%)
increases and decreases in time elapsed out of every path sampled.

that on average, Gradual C0 reduces run-time overhead by 7.1–40.2% compared to the dynamic
verifier. Therefore, the answer to RQ2 is yes.

Figure 21 captures the impact that different types of specification elements (accessibility pred-
icates, predicates, and Boolean expressions) have on Gradual C0’s run-time performance when
specified in different locations. It also captures the impact removing ? from a formula has on
performance. Elements that when added or ? that when removed from one step in a lattice path to
another increase run-time overhead significantly (in the top 1%) are counted in the left subfigure,
and ones that decrease run-time overhead significantly (top 1%) are counted in the right subfigure.
The count for accessibility predicates is colored in green, predicates in purple, Boolean expressions
in yellow, and ? removal in red.

Adding predicates to preconditions, postconditions, and predicate bodies is the most frequent
cause (70.4%) of dramatic increases in run-time verification overhead during the specification
process.When these predicates are added to preconditions and postconditions, they create additional
proof obligations for them in callers and callees (respectively) that are frequently checked at run time.
Similarly, when they are added to predicate bodies (often as recursive calls) any proof obligations for
the enclosing predicate that are checked at run time become far more expensive. Fortunately, folding
or unfolding a predicate can decrease run-time cost when doing so discharges such proof obligations
statically (as seen in the right subfigure). Therefore, users of Gradual C0 may consider specifying
proofs of recursive predicates in frequently executed code to significantly reduce checking costs.

Removing ? from preconditions, postconditions, and predicate bodies when the costly owned
fields passing strategy is still required in corresponding methods is the second most frequent
cause (17.2%) of increases in Gradual C0’s run-time overhead. This corresponds with the spikes at
90% specified in Figure 20 for Gradual C0: Removal of ? in the aforementioned locations leads to
precise pre- and postconditions that trigger the use of this costly strategy. Eventually, a critical
mass of specifications are written so that when ?s are removed further, this costly strategy is no
longer necessary (i.e., when callee methods are full statically verified), and so run-time performance
improves dramatically—the downward trends seen prior to full static specification in Figure 20. This
is reflected in the right subfigure in Figure 21, where removing ? from preconditions, postconditions,
and predicate bodies is the most frequent cause (60.6%) of significant decreases in run-time overhead.
This suggests a strategy for avoiding high checking costs: Specify frequently executed code in
critical-mass chunks that are fully statically verifiable, leaving boundaries between statically and
dynamically verified code in places that are executed less frequently.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:40 J. DiVincenzo et al.

Overall, the answer to RQ3 is yes; we have identified some key contributors to run-time overhead,
whose optimization is a promising direction for future work, and we have also identified strategies
for minimizing run-time overhead in practice.

Finally, all of the partial specifications evaluated in our study were successfully verified by
Gradual C0. Since they originated from complete and correct specifications on code, we can
conclude Gradual C0 adheres to the gradual guarantee for these partial specifications and likely
adheres to the gradual guarantee for common use cases of Gradual C0.

Takeaways. Gradual C0 successfully statically verifies more verification conditions (proof obli-
gations) as more specifications are written (RQ1). But, while this does translate to 7.1–40.2% less
run-time overhead on average for Gradual C0 compared to a fully dynamic approach (RQ2), we
discovered that increasing precision does not always correspond with decreased run-time overhead
from dynamic verification. In fact, we observed that Gradual C0’s run-time performance increases
as precision increases—and expensive proof obligations are introduced without static proof—until
a critical mass of specifications are written after which run-time performance decreases—as more
of these proof obligations are checked statically (this trend is consistent with speculations made in
prior work [Wise et al., 2020]). In particular, we observed that adding expensive-to-runtime-check
specification constructs, such as predicates (specifically recursive ones), to pre- and postconditions
without corresponding specifications (folds and unfolds) that allow Gradual C0 to check them
statically results in significant increases to run-time overhead (RQ3). The overhead is also worse
when such specifications are completely precise and specify the shape of the heap, which triggers
our costly owned fields passing strategy. This leads us to two recommendations: (1) production
gradual verifiers should employ more optimal permission passing strategies, and (2) users of gradual
verification should specify frequently executed code in critical-mass chunks that are fully statically
verifiable, leaving boundaries between statically and dynamically verified code in places that are
executed less frequently.

Threats to Validity. While the test programs we used are of sufficient complexity to demonstrate
interesting empirical trends, they are not representative of all software. Further, the baseline we
used for dynamic verification is entirely unoptimized as we naively insert a check for each written
element of a specification. Finally, due to computational constraints, only a small subset of over
2100 possible imprecise specifications were sampled, and we did not use a formal criteria to choose
our workload values. As such, while our results reveal interesting trends, including significant
performance improvements by Gradual C0 over dynamic verification, more work is needed to
validate the robustness of those trends.

5.5 Qualitative Experience with AVL Tree
Incremental Feedback from Gradual C0 is Useful for Developing Complete Specifications. Notably, it

was our experience that the incrementality of gradual verification was very helpful for developing
a complete specification of the AVL tree example. In particular, a run-time verification error from a
partial specification helped us realize the contract for the rotateRight helper function was not
general enough. We fully specified rotateRight and proved it correct. However, insert’s pre- and
postconditions were left as ?, and so static verification could not show us that the contract proved
for rotateRight was insufficiently general. Nevertheless, we ran the program; gradual verification
inserted run-time checks, and the precondition for rotateRight failed. This early notification
allowed us to identify the problem with the specification and fix it immediately. Otherwise, we
would have had to get deep into the static verification of insert—a complicated function, 50 lines
long, with lots of tricky logic and invariants—before discovering the error, and a lot of verification
work built on the faulty specification would have had to be redone. Interestingly, it is conventional

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:41

Fig. 22. AVL tree balance property specified with
pure functions and unfolding-in.

Fig. 23. AVL tree balance property specified in
our AVL benchmark program.

� Ownership specs � Recursive call � Balance property
� Positive left-right heights � Current node height

wisdom that one of the benefits of static checking is that you get feedback early, when it is easier to
correct mistakes. Here, we encountered a scenario where gradual verification had a similar benefit
over static verification! We found an error (in a specification) earlier than we would have otherwise,
presumably saving time.

Gradual C0 Suffers from Expressiveness Limitations. The specification language of Gradual C0 is
missing pure functions and the unfolding p(4) in 4 construct from Viper. This forced us to devi-
ate from the standard implementation of AVL tree to statically specify and prove our implementation
preserves the balance property—for every node in the tree the height difference between its left and
right children is at most 1. To illustrate, consider Figure 22, which contains the traditional Node
implementation for an AVL tree: Each node contains a key (value), pointers to its left and right child,
and its height in the tree. Figure 22 also contains the recursive avlh predicate (lines 10–28), which
specifies that the tree starting at the given root node is balanced using pure functions and unfolding
p(4) in 4 . Note, unfolding p(4) in 4 is used to allow predicates to frame expressions; i.e., p(4)
is temporarily unfolded once and the body of p(4) is used when determining whether or not 4 is
framed. For example, x->f == 2 is not framed, but p(x) && unfolding p(x) in x->f == 2 is
framed if p(x)’s body contains acc(x->f). Now, let’s take a closer look at avlh in Figure 22. When
the current node is NULL then the balanced property trivially holds for the tree starting at this node
(line 12). Otherwise, (1) ownership of the heap locations in the node are specified as highlighted in

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:42 J. DiVincenzo et al.

green (lines 14–16), (2) the node’s left and right subtrees must be balanced as specified recursively
in orange (lines 17–18), (3) the difference between the heights of the subtrees must be at most 1
(specified in blue on lines 21–22), (4) the heights of the subtrees must be positive (specified in red on
lines 23–24), and (5) the current node’s height must be 1 more than the height of its tallest subtree
(specified in yellow on lines 25–27). Since the specifications in 3–5 constrain the left and right
subtrees’ heights using root->left->height and root->right->height, the heap locations in
root- >left->height and root->right->heightmust be framed by corresponding accessibility
predicates. The locations root->left and root->right are framed by accessibility predicates spec-
ified on line 14; and notably, acc(root->left->height) and acc(root->right->height), which
are contained in avlh(root->left) and avlh(root->right), respectively, are provided for fram-
ing via the unfolding-ins on lines 19–20. Additionally, the pure functions getBalance—which
returns root->left->height - root->right->height when root is non-null—and max—which
returns the maximum of the two arguments—are reused from code in avlh’s body for convenience
on lines 21–22 and 25–27.

Without unfolding p(4) in 4 and pure functions, framing access to the left and right subtrees’
heights in avlh becomes tricky because we do not have a way to reach inside the recursive calls
to avlh where the accessibility predicates for those heap locations are. Our solution in the AVL
benchmark is to modify the implementation of Node to track the left and right subtrees’ heights
directly instead of the height of the tree starting at the current node.This can be seen in Figure 23 on
lines 1–7. Then avlh can be specified without unfolding-ins and pure functions as seen in Figure 23
on lines 10–27. Compared to avlh from Figure 22, avlh in Figure 23 has (1) ownership specs for
the left and right subtree heights (lines 16–17) instead of the overall height, (2) tracks the overall
height as an argument (lines 10, 18–19), (3) constrains the left and right subtree heights directly
via the current node (lines 18–26) instead of via the left and right nodes, and (4) computes the
balance factor (lines 20–21) and max of the subtree heights (lines 24–26) directly instead of via pure
function calls. As such, Gradual C0’s specification language is expressive enough to support the
complete static specification and verification of AVL tree, but requires round-a-bout solutions and
nontraditional adjustments to its implementation. Fortunately, Gradual C0’s algorithms presented in
this article can be straightforwardly extended to support unfolding p(4) in 4 and pure functions
by following solutions for other closely related constructs, such as predicates, nonpure functions,
and accessibility predicates.

6 Related Work
Much of the closely related work, particularly work on gradual verification [Bader et al., 2018;
Wise et al., 2020; Zimmerman et al., 2024], gradual typing [Herman et al., 2010; Siek and Taha,
2006; Siek et al., 2015; Takikawa et al., 2016], and static verification [Müller et al., 2016; Parkinson
and Bierman, 2005; Reynolds, 2002; Smans et al., 2009], has been discussed throughout the article.
Note, this article and the paper by Zimmerman et al. [2024] have distinct contributions. Our work
includes the original development of symbolic execution-based gradual verification and describes
the first implementation of the same, as well as related empirical results. The paper by Zimmerman
et al. [2024] proves that the approach is sound. Now, we discuss additional related work.

Gradual Typing. Additional related work in gradual typing includes richer type systems such as
gradual refinement types [Lehmann and Tanter, 2017] and gradual dependent types [Eremondi
et al., 2019; Lennon-Bertrand et al., 2022]. These systems focus on pure functional programming,
while Gradual C0 targets imperative programs. There is an extensive body of work on optimizing
run-time checks in gradual type systems. Muehlboeck and Tate [2017] show that in languages with
nominal type systems, such as Java, gradual typing does not exhibit the usual slowdowns induced by

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:43

structural types. Feltey et al. [2018] reduce run-time overhead from redundant contract checking by
contract wrappers. They eliminate unnecessary contract checking by determining—across multiple
contract checking boundaries for some datatype or function call—whether some of the contracts
being checked imply others. While the results in Section 5 are promising, we may be able to draw
from the extensive body of work in gradual typing to achieve further performance gains.

Static Verification. Work in formal verification contains approaches that try to reduce the specifi-
cation burden of users—a goal of Gradual C0. Furia and Meyer [2010] infer loop invariants with
heuristics that weaken postconditions into invariants. When that approach fails, verification also
fails because invariants are missing. Similarly, several tools (SmallFoot [Berdine et al., 2006], JStar
[Distefano and Parkinson, 2008], and Chalice [Leino et al., 2009]) use heuristics to infer fold and
unfold statements for verification. In contrast, Gradual C0 does not fail solely because invariants,
folds, or unfolds are missing; imprecision begets optimism. However, Gradual C0 may benefit
from similar heuristic approaches by leveraging additional static information to further reduce
run-time overhead.
Abductive reasoning (abductive inference) tries to find an explanatory hypothesis for a desired

outcome [Dillig et al., 2012]. In static verification, the desired outcome is a proof obligation ($),
facts (� ) are invariants derived from the program and specifications using some analysis, and the
explanatory hypothesis (�) are invariants that do not contradict the derived facts (SAT(� ∧ �)) and
are required to discharge the proof obligation (� ∧� |= $). Ideally, � should be sufficient to discharge
$ , but missing or insufficient specifications often results in � being too weak to prove $ leading
to false positives (alarms) in tools. So, work in applying abductive reasoning to static verification
[Blackshear and Lahiri, 2013; Calcagno et al., 2009; Chandra et al., 2009; Das et al., 2015; Dillig et al.,
2012] aims to compute � in order to prioritize—with minimal human intervention—verification
failures caused by bugs in a program and de-emphasize false positives (alarms) caused by missing
or incomplete specifications. In angelic verification [Blackshear and Lahiri, 2013; Das et al., 2015]
and the work by Calcagno et al. [2009], entire specifications, such as preconditions, postconditions,
and loop invariants, are generated as explanatory hypotheses. Dillig et al. [2012] instead compute
smaller, intermediate formulas as explanatory hypotheses.

Similar to prior abductive reasoning work [Blackshear and Lahiri, 2013; Calcagno et al., 2009;
Das et al., 2015; Dillig et al., 2012], Gradual C0’s static system reasons around missing or incomplete
specifications to compute facts � as part of imprecise formulas ? ∧ � . At proof obligations, we
approximate the weakest formula that can replace ? in ? ∧ � |= $ and SAT(? ∧ � ) successfully.
So, like Dillig et al. [2012] we compute intermediate explanatory hypotheses rather than whole
specifications like Blackshear and Lahiri [2013], Calcagno et al. [2009], and Das et al. [2015].
But, rather than relying on users to validate generated hypotheses [Blackshear and Lahiri, 2013;
Calcagno et al., 2009; Das et al., 2015; Dillig et al., 2012], we check their correctness at run time.
This significantly simplifies their computation—since they do not need to be human readable and
can statically mark code as unreachable—and allows Gradual C0 to be sound (prior abduction
work is not).

Dynamic Verification. Meyer [1988] introduced the Eiffel language, which automatically performs
dynamic verification of pre- and postconditions and class invariants in first-order logic. Nguyen
et al. [2008] extended dynamic verification to support separation logic assertions. More recently,
Agten et al. [2015] applied dynamic checking at the boundaries between statically verified and
unverified code to guarantee that no assertion failures or invalid memory accesses occur at run time
in any verified code. Their approach improved on the approach by Nguyen et al. [2008] in terms of
performance by allowing unverified code to read arbitrary memory. Further, unlike Nguyen et al.
[2008], the approach by Agten et al. [2015] only needs access to verified code rather than the entire

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:44 J. DiVincenzo et al.

codebase. As with the work by Nguyen et al. [2008], Gradual C0 supports dynamic verification of
ownership and first-order logic. Gradual C0 additionally supports run-time checking of recursive
predicates. Similarly to Agten et al. [2015], Gradual C0 applies dynamic checking at the boundaries
between verified and unverified code to protect verified code. However, in Gradual C0 unverified
code must be accessible to the verifier as it is gradually verified as well. Future work in gradual
verification should incorporate insights from the work by Agten et al. [2015] to avoid requiring
entire codebases for verification and to improve verification performance.

Hybrid Verification. Another closely related work is soft contract verification [Nguyen et al., 2014],
which verifies dynamic contracts statically where possible and dynamically where necessary by
utilizing symbolic execution. This hybrid technique does not rely on a notion of precision, which is
central to gradual approaches and their metatheory [Siek et al., 2015]. Nguyen et al. [2014] use
symbolic execution results directly to discharge proof obligations where possible, while Gradual
C0 strengthens symbolic execution results to discharge proof obligations adhering to the theory of
imprecise formulas from Wise et al. [2020]. Further, the work by Nguyen et al. [2014] is targeted at
dynamic functional languages, while our work focuses on imperative languages.
7 Conclusion
Gradual verification is a promising approach to supporting incrementality and enhance adoptability
of program verification. Users can focus on specifying and verifying the most important properties
and components of their systems and get immediate feedback about the consistency of their
specifications and the correctness of their code. By relying on symbolic execution, Gradual C0
overcomes several limitations of prior work on gradual verification of recursive, heap-manipulating
programs. The experimental results show that our approach can reduce overhead significantly
compared to purely dynamic checking and confirms performance trends speculated in prior work.

Limitations and Future Work. However, more work remains to extend gradual verification (and
Gradual C0) to the expressiveness of state-of-the-art static program verifiers, such as Viper. In
particular, Gradual C0 lacks support for specifications containing quantification, pure functions,
unfoldings, magic wands (lemmas), and fractional permissions. Pure functions and unfoldings are
natural extensions to the work presented in this article: Pure functions can be treated similarly to
predicates and nonpure functions, and unfoldings are semantically similar to an unfold, assert, and
fold sequence. As seen in Section 5.5, such constructs are convenient for verifying recursive heap
data structures. Quantification provides a natural way to specify properties about arrays (and thus
strings) [Müller et al., 2016], magic wands eliminate the need to specify lemmas when converting
between multiple views of the same structure [Müller et al., 2016], and fractional permissions
aide in the verification of concurrent programs [Boyland, 2003]. However, these features require
nontrivial extensions to current gradual verification theory; for example, it is not clear what ?
means under a quantifier nor what permissions may be transferred to threads when contracts or
invariants are underspecified. So, we leave such extensions to future work and provide Gradual
C0 as a solid foundation for such work.

Additionally, we did not build any front-ends for Gradual Viper beyond the C0 one, so we did not
concretely evaluate the extensibility of our design to other languages. However, Gradual Viper’s
intermediate language is a core subset of Viper’s language, which supports front-ends for imperative
languages such as Java, Rust, and Python. Furthermore, we were able to encode run-time checks in
the much less expressive C0 language, so any more expressive language (like Java, Rust, and Python)
would also be able to encode them. Therefore, developing front-ends for a core subset of such
imperative languages should be a straightforward process, and, as the expressiveness of Gradual
C0’s specification language increases to match Viper’s, then the gradually verified core for these
languages can also increase correspondingly. As such, we leave these explorations to future work.
ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:45

Finally, while our empirical study (Section 5) revealed interesting trends for Gradual C0 (and
gradual verification), such as significant performance improvements over dynamic verification, our
study has limitations. In particular, our test programs (while sufficiently complex) are smaller in size
and focused on recursive heap data structures, and the dynamic verification approach we compared
Gradual C0 against is unoptimized. We leave confirmation of how broadly the aforementioned
trends apply to future work. Our study showed that Gradual C0’s run-time checking strategies
for owned fields and recursive predicates were significant causes of performance degradation and
require further optimizations. Additionally, more aspects of Gradual C0’s design, such as Gradual
C0’s approach for checking branch conditions at run time, should be studied more thoroughly in
future work for the impact they have on Gradual C0’s run-time performance.

Despite the aforementioned limitations, we believe the symbolic-execution approach to gradual
verification presented in this article and implemented in Gradual C0 provides a solid foundation
for future work in gradual verification and shows promise to make verification more adoptable in
software development practice.

Acknowledgments
We thank the reviewers across multiple rounds of submission (OOPSLA’22,OOPSLA’23, and TOPLAS)
for their feedback on our article. Our article has beenmuch improved, thanks to the detailed feedback
we received.

References
Pieter Agten, Bart Jacobs, and Frank Piessens. 2015. Sound modular verification of C code executing in an unverified context.

In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’15). ACM, New York, NY, 581–594. DOI: https://doi.org/10.1145/2676726.2676972

Rob Arnold. 2010. C0, an Imperative Programming Language for Novice Computer Scientists. Master’s thesis. Department of
Computer Science, Carnegie Mellon University.

Johannes Bader, Jonathan Aldrich, and Éric Tanter. 2018. Gradual program verification. In Proceedings of the International
Conference on Verification, Model Checking, and Abstract Interpretation. Springer, 25–46.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2006. SmallFoot: Modular automatic assertion checking with
separation logic. In Proceedings of the 4th International Symposium on Formal Methods for Components and Objects (FMCO
’06). Revised Lectures 4, Springer, 115–137.

Sam Blackshear and Shuvendu K. Lahiri. 2013. Almost-correct specifications: A modular semantic framework for assigning
confidence to warnings. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 209–218.

John Boyland. 2003. Checking interference with fractional permissions. In Proceedings of the International Static Analysis
Symposium. Springer, 55–72.

Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. 2009. Compositional shape analysis by means
of bi-abduction. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 289–300.

John Peter Campora, Sheng Chen, and Eric Walkingshaw. 2018. Casts and costs: Harmonizing safety and performance in
gradual typing. PACM on Programming Languages 2, ICFP (Sept. 2018), 98:1–98:30.

Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snugglebug: A powerful approach to weakest preconditions. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation, 363–374.

Ankush Das, Shuvendu K. Lahiri, Akash Lal, and Yi Li. 2015. Angelic verification: Precise verification modulo unknowns. In
Proceedings of the 27th International Conference on Computer Aided Verification (CAV ’15), Proceedings, Part I 27. Springer,
324–342.

Edsger W. Dijkstra. 1975. Guarded commands, nondeterminacy and formal derivation of programs. Communications of the
ACM 18, 8 (Aug. 1975), 453–457.

Isil Dillig, Thomas Dillig, and Alex Aiken. 2012. Automated error diagnosis using abductive inference. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’12), 181–192. DOI:
https://doi.org/10.1145/2254064.2254087

Dino Distefano and Matthew J. Parkinson. 2008. JStar: Towards practical verification for Java. In Proceedings of the 23rd
ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages and Applications (OOPSLA ’08), 213–226.
DOI: https://doi.org/10.1145/1449764.1449782

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.

https://doi.org/10.1145/2676726.2676972
https://doi.org/10.1145/2254064.2254087
https://doi.org/10.1145/1449764.1449782


14:46 J. DiVincenzo et al.

Joseph Eremondi, Éric Tanter, and Ronald Garcia. 2019. Approximate normalization for gradual dependent types. Proceedings
of the ACM on Programming Languages 3, ICFP, Article 88 (Jul. 2019), 30 pages. DOI: https://doi.org/10.1145/3341692

Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour. 2018. Collapsible contracts:
Fixing a pathology of gradual typing. Proceedings of the ACM on Programming Languages 2, OOPSLA, Article 133 (Oct.
2018), 27 pages. DOI: https://doi.org/10.1145/3276503

Carlo Alberto Furia and Bertrand Meyer. 2010. Inferring loop invariants using postconditions. In Fields of Logic and
Computation. Andreas Blass, Nachum Dershowitz, and Wolfgang Reisig (Eds.), Lecture Notes in Computer Science, Vol
6300, Springer, 277–300. Retrieved from https://link.springer.com/chapter/10.1007/978-3-642-15025-8_15

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient gradual typing. Higher-Order and Symbolic
Computation 23, 2 (Jun. 2010), 167–189.

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A power-
ful, sound, predictable, fast verifier for C and Java. In Proceedings of the NASA Formal Methods Symposium. Springer, 41–55.

James C. King. 1976. Symbolic execution and program testing. Communications of the ACM 19, 7 (Jul. 1976), 385–394.
Nico Lehmann and Éric Tanter. 2017. Gradual refinement types. In Proceedings of the 44th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’17), 775–788.
K. Rustan M. Leino, Peter Müller, and Jan Smans. 2009. Verification of concurrent programs with Chalice. In Foundations of

Security Analysis and Design V . Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri (Eds.), Lecture Notes in Computer
Science, Vol. 5705, Springer, 195–222. Retrieved from https://link.springer.com/chapter/10.1007/978-3-642-03829-7_7

Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter. 2022. Gradualizing the calculus of
inductive constructions. ACM Transactions on Programming Languages and Systems 44, 2 (Jun. 2022), 1–82. DOI:
https://doi.org/10.1145/3495528

Bertrand Meyer. 1988. Eiffel: A language and environment for software engineering. Journal of Systems and Software 8,
3 (1988), 199–246.

Fabian Muehlboeck and Ross Tate. 2017. Sound gradual typing is nominally alive and well. Proceedings of the ACM on
Programming Languages 1, OOPSLA, Article 56 (Oct. 2017), 30 pages. DOI: https://doi.org/10.1145/3133880

P. Müller, M. Schwerhoff, and A. J. Summers. 2016. Viper: A verification infrastructure for permission-based reasoning.
In Proceedings of the 17th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI
’16) (LNCS, Vol. 9583). B. Jobstmann and K. R. M. Leino (Eds.), Springer-Verlag, 41–62.

Huu Hai Nguyen, Viktor Kuncak, and Wei-Ngan Chin. 2008. Runtime checking for separation logic. In Proceedings of
the International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, 203–217.

Phúc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. 2014. Soft contract verification. In Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). ACM, New York, NY, 139–152. DOI:
https://doi.org/10.1145/2628136.2628156

Matthew Parkinson and Gavin Bierman. 2005. Separation logic and abstraction. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’05), 247–258. DOI:
https://doi.org/10.1145/1040305.1040326

John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science. IEEE, 55–74.

Malte H. Schwerhoff. 2016. Advancing Automated, Permission-Based Program Verification Using Symbolic Execution. Ph.D.
Dissertation. ETH Zurich.

Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages. In Proceedings of the Scheme and Functional
Programming Workshop, Vol. 6, 81–92.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined criteria for gradual typing.
In Proceedings of the 1st Summit on Advances in Programming Languages (SNAPL ’15), LIPIcs-Leibniz International
Proceedings in Informatics, Vol. 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 274–293.

Jan Smans, Bart Jacobs, and Frank Piessens. 2009. Implicit dynamic frames: Combining dynamic frames and separation
logic. In Proceedings of the European Conference on Object-Oriented Programming. Springer, 148–172.

Alexander J. Summers and Sophia Drossopoulou. 2013. A formal semantics for isorecursive and equirecursive state
abstractions. In Proceedings of the European Conference on Object-Oriented Programming. Springer, 129–153.

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is sound gradual
typing dead? In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16), 456–468. DOI: https://doi.org/10.1145/2837614.2837630

Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Éric Tanter, and Joshua Sunshine. 2020. Gradual verification
of recursive heap data structures. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–28.

Conrad Zimmerman, Jenna DiVincenzo, and Jonathan Aldrich. 2024. Sound gradual verification with symbolic execution.
Proceedings of the ACM on Programming Languages 8, POPL (2024), 2547–2576.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.

https://doi.org/10.1145/3341692
https://doi.org/10.1145/3276503
https://link.springer.com/chapter/10.1007/978-3-642-15025-8_15
https://link.springer.com/chapter/10.1007/978-3-642-03829-7_7
https://doi.org/10.1145/3495528
https://doi.org/10.1145/3133880
https://doi.org/10.1145/2628136.2628156
https://doi.org/10.1145/1040305.1040326
https://doi.org/10.1145/2837614.2837630


Gradual C0: Symbolic Execution for Gradual Verification 14:47

Appendix A
In eval-p (Figure A2), a special case (highlighted in blue) for unfold statements is added that creates
run-time checks for field accesses in the unfolded predicate’s body. This case ensures soundness
when introducing branch condition variables in C0 programs during run-time verification. In our
implementation of Gradual C0, these checks are optimized further as they are only produced for
branch conditions in the predicate body rather than for the whole body.

A.1 Diff and Translate
The diff (Figure A4) function finds a minimal run-time check from an optimistically asserted
formula containing statically known information. It accomplishes this by first performing a standard
transformation to CNF on the optimistically asserted formula, to extract the maximal number of
top level conjuncts. It then attempts to call check() on each conjunct; it accumulates each conjunct
for which the call does not succeed. The set of conjuncts which could not be statically discharged
are returned as the final check.

Fig. A1. Path condition helper functions.

Fig. A2. Rules for symbolically executing expressions without introducing run-time checks (except for a
special case for unfold).

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:48 J. DiVincenzo et al.

Fig. A3. Rules for symbolically executing expressions without modifying the optimistic heap and path
condition.

Fig. A4. Algorithm for computing the diff between two symbolic values.

The translate (Figure A5) function lifts symbolic values to concrete values. Most symbolic
values are directly translated to their concrete counterparts via recursive descent; the exception is
variables, whose concrete values must be reconstructed by searching the program state known by
the verifier. This is done by retrieving the states of the symbolic store, which contains mappings
from concrete variables to symbolic variables, and the heap, which contains field and predicate
permissions. When translate encounters a symbolic variable, it first retrieves all possible aliasing
information from Gradual Viper’s state. This includes all variables known to be equivalent to the
translation target according to the path condition and the heap. If the translation target or one of
its aliases exists as a value in the symbolic store, then the translator finds a key corresponding
to it in the store and returns it. Note that multiple valid keys may exist for a particular symbolic
variable, because Gradual Viper may have determined that multiple concrete values are equivalent
at a particular program point. If the translation target is a field, then only the top level receiver
(the variable on which fields are being accessed) or one of its aliases will exist in the store. The
fields being accessed are resolved by mapping their corresponding heap entries, or any aliased heap
entries, to a value in the symbolic store, and resolving the store entry as described. In particular
contexts, translate may be asked to translate a precondition for a method call, or a predicate

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:49

Fig. A5. Translate’s procedure for resolving variables.

body for an (un)fold statement. In these cases, an old store attached to the current symbolic state as
described in Section 4.3.7 is retrieved, and its symbolic store and heap are used for translation. This
causes variables in a precondition or predicate to be resolved to their concrete values at the call site,
or site of unfolding. This enables run-time checks produced via translate to be straightforwardly
emitted to the frontend. The portion of translate related to translating variables is shown in
Figure A5.

A.2 Symbolic Production of Formulas
The rules for produce are given in Figure 12. Essentially, produce takes a formula and snapshot X
(mirroring the structure of the formula) and adds the information in the formula to the symbolic
state, which is then returned to the continuation& . An imprecise formula ?&&q has its static partq
produced into the current statef alongside second(X). Note the snapshot X for an imprecise formula
looks like (D=8C, second(X)) where D=8C is the snapshot for ? and second(X) is the snapshot for q .
An imprecise formula also turns f imprecise to produce the unknown information represented
by ? into f . For example, if the state is represented by the formula \ , then this rule results in
? && \ && q . A symbolic value C is produced into the path condition of the current state f . Also,
the snapshot X for C must be D=8C , so this fact is also stored in f ’s path condition. Then, f is passed
to & .

The produce rule for expression 4 first evaluates 4 to its symbolic value C using eval-p. Then, C is
produced into the path condition of the current state f2 using the aforementioned symbolic value
rule. Imprecision in the symbolic state can always provide accessibility predicates for fields also in
the state. Therefore, when fields in 4 are added to an imprecise state, heap chunks for those fields do
not have to already be in the state, e.g., the state ? && true becomes ? && true && 4 . This

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:50 J. DiVincenzo et al.

functionality is permitted by eval-p. Similarly, an imprecise formula always provides accessibility
predicates for fields in its static part, e.g., the state true and produced formula ? && 4 results
in the state ? && true && 4 . The goal of produce is not to assert information in the state,
but rather add information to the state. So we reduce run-time overhead by ensuring no run-time
checks are produced by produce even for verifying field accesses.

The rules for producing field and predicate accessibility predicates into the state f1 operate in a
very similar manner. Thus, we will focus on the rule for fields only. The field 4.5 in acc(4.5 ) first
has its receiver 4 evaluated to C by eval-p, resulting in f2. Then, using the parameter X a fresh heap
chunk 5 (C ; X) is created and added to f2’s heap ℎ, which represents acc(4.5 ) in the state. Note,
the disjoint union ] ensures 5 (C ; X) is not already in the heap before adding 5 (C ; X) in there. If
the chunk is in the heap, then verification will fail. Further, acc(4.5 ) implies 4 ≠ null and so that
fact is recorded in f2’s path condition as C ≠ null.

When the separating conjunctionq1 && q2 is produced,q1 is first produced and then afterwards
q2 is produced into the resulting symbolic state. Note that the snapshot X is split between the two
formulas using first(X) and second(X). Finally, to produce a conditional, Gradual Viper branches
on the symbolic value C for the condition 4 splitting execution along two different paths. Along
one path only the true branch q1 is produced into the state, and along the other path only the false
branch q2 is produced. Both paths follow the continuation to the end of its execution. More details
about branching are provided next, as we describe Gradual Viper’s branch function.

The branch function in Figure 13 is used to split the symbolic execution into two paths in a
number of places in our algorithm: during the production or consumption of logical conditionals
and during the execution of if statements. One path (&C ) is taken under the assumption that the
parameter C is true, and the other (&¬C ) is taken under the assumption that C is false. For each path,
a branch condition corresponding to the assumption made is added to f.R, as highlighted in blue.
Additionally, paths may be pruned using check when Gradual Viper knows for certain a path is
infeasible (the assumption about C would contradict the current path conditions). Now, normally,
if either of the two paths fail verification, then branch marks verification as failed (∧ the results).
This is still true when f (the current state) is precise. However, when f is imprecise, branch can be
more permissive as highlighted in yellow. If verification fails on one of two paths only (one success,
one failure), then branch returns success (∨ the results). In this case, a run-time check (highlighted
in blue) is added to ℜ to force run-time execution down the success path only. Of course, two
failures result in failure and two successes result in success (∨ the results). No run-time checks
are produced in these cases, as neither path can be soundly taken or both paths can be soundly
taken at run time, respectively. Note that Gradual Viper being flexible in the aforementioned way
is critical to adhering to the gradual guarantee at branch points.

A.3 Symbolic Consumption of Formulas

The goals of consume are 3-fold: (1) given a symbolic state f and formula q̃ check whether q̃ is
established by f , i.e., q̃f ⇒̃ q̃ where q̃f is the formula which represents the state f , (2) produce and
collect run-time checks that are minimally sufficient for f to establish q̃ soundly, and (3) remove
accessibility predicates and predicates that are asserted in q̃ from f . Note that ⇒̃ is the consistent
implication formally defined by Wise et al. [2020]. The rules for consume are given in Figure A6.

The consume function always begins by consolidating information across the given heap f1.ℎ and
path condition f1 .c . The invariant on the heap f1.ℎ ensures all heap chunks in f1 .ℎ are separated in
memory, e.g., 5 (G ; X1) ∈ f1.ℎ and 5 (~; X2) ∈ f1.ℎ implies G ≠ ~. Similarly, 5 (G ; X1) ∈ f1.ℎ implies
G ≠ null. Therefore, such information is added to the path condition f1.c during consolidation.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:51

Fig. A6. Rules for symbolically consuming formulas (1/3), (2/3), and (3/3).

Further, consolidate ensures f1 .ℎ and f1 .c are consistent, i.e., do not contain contradictory infor-
mation. We use the definition of consolidate from Schwerhoff [2016], without repeating it here.

After consolidation, consume calls a helper function consume’, which performs the major
functionality of consume. Along with the state f2 from consolidation, consume’ accepts a Boolean
flag, optimistic heap f2.ℎ?, regular heap f2.ℎ, the formula to be consumed q̃ , and a continuation.
The Boolean flag sent to consume’ controls how f2 provides access to fields in q̃ . When q̃ is precise
(is \ ), then f2 provides access to fields in \ through heap chunks or imprecision where applicable.
Therefore, in this case, the Boolean flag is set to f2.isImprecise. However, when q̃ is imprecise
(i.e., ? && q), then the Boolean flag is set to true so access to fields in q̃ is always justified: first
by f2 if applicable and second by imprecision in q̃ . Copies of the optimistic heap f2.ℎ? and regular
heap f2 .ℎ are sent to consume’ where heap chunks from q̃ are removed from them. If consume’
succeeds, then when q̃ is precise execution continues with the residual heap chunks. When q̃ is
imprecise execution continues with empty heaps, because q̃ may require and assert any heap chunk
in f2. Residual heap chunks are instead represented by imprecision, i.e., execution continues with
an imprecise state. Finally, consume’ also sends snapshots collected for removed heap chunks to
the continuation.

Rules for consume’ can also be found in Figure A6. Cases for expressions 4 , the separating
conjunction q1 && q2, and logical conditionals 4 ? q1:q2 are straightforward. Expressions are
evaluated to symbolic values that are then consumed with the corresponding rule. In a separating
conjunction, q1 is consumed first, then afterward q2 is consumed. The rule for logical conditionals
evaluates the condition 4 to a symbolic value, and then uses the branch function to consume q1

and q2 along different execution paths. The case for acc(? (4)) is also very similar to the case for
acc(4.5 ) that we discuss later in this section.

When a symbolic value C is consumed, the current state f must establish C , i.e., f ⇒̃ C , or
verification fails. The assert function (defined in Figure A8) implements this functionality. In
particular, assert returns success() when c can statically prove C or when f is imprecise and
C does not contradict constraints in c—here, C is optimistically assumed to be true. Otherwise,
assert returns failure(). When assert succeeds, it also returns a set of symbolic values C that are
residuals of C that cannot be proved statically by c . If C is proven entirely statically, then assert
returns true. A run-time check is created for the residuals C and is added to f to be passed to the
continuation & . Note that translate is used to create an expression from C that can be evaluated
at run time. Further, the location 4 is the expression that evaluates to C and is passed to consume’
alongside C . The heaps ℎ? and ℎ are passed unmodified to & alongside the snapshot D=8C .

The consume’ rule for accessibility predicates acc(4.5 ), first evaluates the receiver 4 to C using
eval-c, the current state f1, and the parameter 5?. The parameter 5? is the Boolean flag mentioned

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:52 J. DiVincenzo et al.

Fig. A6. (Continued).

previously. Assigning 5? to f1.isImprecise during evaluation allows 5? to control whether or
not imprecision verifies field accesses. This occurs in all of the consume’ rules where expressions
and thus fields are evaluated. After evaluation, the isImprecise field is reset resulting in f3, and
assert is used to ensure the receiver C is non-null. If C ≠ null is optimistically true, a run-time
check for C ≠ null at location acc(4.5 ) is created and added to f3 .R. Next, heap-rem-acc is used to

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:53

Fig. A6. (Continued).

remove the heap chunks from heap ℎ that overlap with or may potentially overlap with acc(4.5 ) in
memory. The heap-rem-acc function is formally defined alongside a similar function for predicates
(heap-rem-pred) in Figure A7. If a field chunk is not statically proven to be disjoint from acc(4.5 ),
then it is removed. Further, since predicates are opaque, Gradual Viper cannot tell whether or
not their predicate bodies overlap with acc(4.5 ). Therefore, predicate chunks are almost always
considered to potentially overlap with acc(4.5 ). The only time this is not the case is if they both
exist in the heap ℎ, which ensures its heap chunks do not overlap in memory. The heap-rem-acc
function also checks that acc(4.5 ) has a corresponding heap chunk in ℎ. If so, its snapshot X1 is
returned and 11 is assigned true. Otherwise, a fresh snapshot is returned with false. If the current
state f3 is imprecise, then heap chunks are similarly removed from ℎ? and acc(4.5 ) is checked for
existence in ℎ?. If a field chunk for acc(4.5 ) is not found in either heap, then a run-time check
is generated for it and passed to the continuation & alongside the two heaps after removal and
acc(4.5 )’s snapshot. Without imprecision, consume’ will fail when a field chunk for acc(4.5 ) is not
found in ℎ.

A.4 Symbolic Execution of Statements
The exec rules (Figure A9) for sequence statements, variable declarations and assignments, alloca-
tions, and if statements are pretty much unchanged from Viper. The only difference is that Gradual
Viper’s versions of eval, produce, branch, and consume (defined previously) are used instead of
Viper’s. Statements in a sequence are executed one after another, and variable declarations in-
troduce a fresh symbolic value for the variable into the state. Variable assignments evaluate the
right-hand side to a symbolic value and update the variable in the symbolic store with the result.
Allocations produce fresh heap chunks for fields into the state. Finally, if statements have their
condition evaluated and then branch is used to split execution along two paths to symbolically
execute the true and false branches.

Symbolic execution of field assignments first evaluates the right-hand side expression 4 to the
symbolic value C with the current state f1 and eval. Any field reads in 4 are either directly or
optimistically verified using f1. Then, the resulting state f2 must establish write access to G .5 in
consume, i.e., f2 ⇒̃ acc(G .5 ). The call to consume also removes the field chunk for acc(G .5 ) from
f2 (if it is in there) resulting in f3. Therefore, the call to produce can safely add a fresh field chunk
for acc(G .5 ) alongside G .5 = C to f3 before it is passed to the continuation & . Under the hood,
run-time checks are collected where required for soundness and passed to & .

The exec rule for method calls similarly uses eval to evaluate the given args 4 to symbolic values
C , asserts the method’s precondition<4Cℎ?A4 holds in the current state, consumes the heap chunks

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:54 J. DiVincenzo et al.

Fig. A7. Heap remove function definitions.

Fig. A8. Check and assert function definitions.

in the precondition, and produces the method’s postcondition <4Cℎ?>BC into the continuation.
Run-time checks are also collected where necessary (under the hood) and passed to the contin-
uation. Gradual Viper makes an exception when consuming preconditions at method calls (and
loop invariants before entering loops), which can be seen in the if-then in the method call rule. If
Gradual Viper determines the precondition (invariant) is equi-recursively imprecise (as defined by
Figure A10), then it will conservatively remove all the heap chunks from both symbolic heaps after
the consume. This exception ensures the static verification semantics in Gradual Viper lines up
with the equi-recursive, dynamic verification semantics encoded by GVC0 in Section 4.4 such that
Gradual C0 is sound. Note that the origin field of R is set to I := <(4) before consuming<4Cℎ?A4
and reset to none after producing<4Cℎ?>BC . Setting the origin indicates that run-time checks or
branch conditions for<4Cℎ?A4 or<4Cℎ?>BC should be attached to the method call statement rather
than where they are declared. The origin arguments f2 and C are used to reverse the substitution

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:55

Fig. A9. Rules for symbolically executing program statements (1/2).

[<4Cℎ0A6B ↦→ C] in run-time checks and branch conditions for<4Cℎ?A4 and<4Cℎ?>BC . The rule for
(un)folding predicates operates the same as for method calls where<4Cℎ?A4 is the predicate body
(predicate instance) and<4Cℎ?>BC is the predicate instance (predicate body). The origin is set to
fold acc(? (4)) and unfold acc(? (4)), respectively.

In contrast, q in assert q maintains a none origin field, because q ’s use and declaration align
at the same program location assert q . The assert rule relies on consume to assert q holds in
the current state f1. If the consume succeeds, the state f1 is passed to the continuation nearly

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



14:56 J. DiVincenzo et al.

Fig. A9. (Continued).

unmodified. Path condition constraints from q hold in f1 either directly or optimistically. Therefore,
these constraints are added to f1 to avoid producing run-time checks for them in later program
statements. Run-time checks from the consume are also passed to the continuation. Note that q
is checked for well-formedness here (Figure A11). A formula is well-formed if it contains ? or
accessibility predicates that verify access to the formula’s fields (self-framing). Additionally, the
formula cannot contain duplicate accessibility predicates or predicate instances. Finally,well-formed
adds the formula’s information to the given symbolic state. Here, q does not need to be self-framed,
and so it is joined with ? in the call to well-formed. ? verifies access to all of q ’s fields.

Finally, while the while loop rule is the largest rule and looks fairly complex, it just combines
ideas from other rules that are discussed in great detail in this section and from the branch rule
described in Appendix A.2.

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.



Gradual C0: Symbolic Execution for Gradual Verification 14:57

Fig. A10. Boolean function determining if a gradual formula is equi-recursively imprecise or not.

Fig. A11. Well-formed formula function definition.

A.5 Valid Program
A Gradual Viper program is valid if all of its method and predicate declarations are verified
successfully as defined in Figure 16. In particular, a method <’s declaration is verified first by
checking well-formedness of<’s precondition<4Cℎ?A4 and postcondition<4Cℎ?>BC using the empty
state f0 (well-formedness is described in Appendix A.4). Note, fresh symbolic values are created
and added to f0 for<’s argument variables G and return variables ~. If<4Cℎ?A4 and<4Cℎ?>BC are
well-formed, then the body of< (<4Cℎ1>3~) is symbolically executed (Appendix A.4) starting with
the symbolic state f1 containing<4Cℎ?A4 . Recall, well-formed additionally produces the formula
that is being checked into the symbolic state. The symbolic state f2 is produced after the symbolic
execution of <4Cℎ1>3~ . Then, <4Cℎ?>BC is checked for validity against f2, i.e., f2 must establish
<4Cℎ?>BC (Appendix A.3). If<4Cℎ?>BC is established, then verification succeeds; and as a result, the
run-time checks collected during verification are added toℜ (highlighted in blue). A valid predicate
? is simply valid if ?’s body ?A431>3~ is well-formed. As before, fresh symbolic values are created for
?’s argument variables G . Note, no run-time checks are added to ℜ here, because well-formedness
checks do not produce any run-time checks.

Received 19 December 2023; revised 31 July 2024; accepted 24 October 2024

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 4, Article 14. Publication date: January 2025.


