Implementation of an End-to-End Gradual
Verification System

Hemant Gouni*
gouni008@umn.edu
University of Minnesota, Twin Cities
United States

Abstract

Static verification is used to ensure the correctness of pro-
grams. While useful in critical applications, the high over-
head associated with writing specifications limits its general
applicability. Similarly, the run-time costs introduced by dy-
namic verification limit its practicality. Gradual verification
validates partially specified code statically where possible
and dynamically where necessary. As a result, software devel-
opers gain granular control over the trade-offs between static
and dynamic verification. This paper contains an end-to-end
presentation of gradual verification in action, with a focus
on applying it to Cy (a safe subset of C) and implementing
the required dynamic verification.

CCS Concepts: « Theory of computation — Logic and
verification; Separation logic.

Keywords: gradual verification, program correctness, im-
plicit dynamic frames

ACM Reference Format:

Hemant Gouni and Conrad Zimmerman. 2021. Implementation of
an End-to-End Gradual Verification System. In Companion Proceed-
ings of the 2021 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity
(SPLASH Companion ’21), October 17-22, 2021, Chicago, IL, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3484271.
3484980

1 Motivation

Programs fully annotated with static specifications provide
unmatched correctness guarantees. However, static verifica-
tion tools often require complete and thorough specifications,

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH Companion °21, October 17-22, 2021, Chicago, IL, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9088-0/21/10...$15.00
https://doi.org/10.1145/3484271.3484980

28

Conrad Zimmerman*
conrad_zimmerman@brown.edu
Brown University
United States

introducing a prohibitive overhead for modern software. Dy-
namic verification tools largely eliminate this burden at the
cost of performance, and are limited in their guarantees.

Gradual verification creates a smooth spectrum of pro-
gram specification between static and dynamic verification.
Specifically, it enables static specifications to be developed
incrementally, allowing the behavior of unspecified compo-
nents to be verified dynamically. However, previous work on
gradual verification [11] has not implemented the dynamic
portion of the system, nor support for a language capable of
using it.

2 Introduction

While static verification requires extensive specifications
to prove programs correct, gradual verification allows non-
contradictory strengthening of incomplete specifications to
complete proofs. In order to preserve soundness when this
occurs, a gradual verifier emits executable checks which
ensure a program behaves according to its specifications at
run time.

Our work on gradual verification follows from previous
work on verification in the context of gradual typing. Bader
et al. [3] developed a verification system for simple arith-
metic specifications by building on the Abstracting Gradual
Typing [5] technique. Wise et al. [9] advanced this system
to support reasoning about memory and complex data struc-
tures. More recently, Zhang and Gorenburg [11] extended
the Viper verification toolchain [6] to support static discharg-
ing of imprecise specifications. We have further extended
their work to emit the necessary dynamic checks, ensuring
soundness in the presence of imprecision. Additionally, we
have implemented a C [1] frontend for Gradual Viper which
extends the Cy compilation pipeline to support gradual verifi-
cation. The next section describes the generation of dynamic
checks and the novel technical challenges that we overcame
to implement end-to-end support for gradual verification.

The C, language is a safe subset of C tailored for teach-
ing and academic use. Its small surface area simplifies the
implementation of a new verification system. Additionally,
the familiarity of Cy users with its existing support for (dy-
namically verified) specifications allow us to more readily
compare the efficacy of gradual verification to that of other
methods in the future.

https://doi.org/10.1145/3484271.3484980
https://doi.org/10.1145/3484271.3484980
https://doi.org/10.1145/3484271.3484980

SPLASH Companion ’21, October 17-22, 2021, Chicago, IL, USA

CCO
(CO Compiler)

Intermediate
representation

<

Silver
(Viper language)

D

source.cO

Tung;
e Checy,
s,

N Silicon

(Viper verifier)

Figure 1. Gradual C, program verification pipeline

3 Approach

The pipeline for our gradual verification toolchain is sum-
marized in Figure 1. An example Cy program implementing
logic for a bank account is shown in Figure 2. The monthEnd
method uses the withdraw method to remove 5 units from
the account when its balance is less than or equal to 100.
Gradual specifications partially define the behavior of both
monthEnd and withdraw. For example, the account balance
must be a positive value for a call to withdraw to be valid.
The postcondition of withdraw is unspecified as indicated
by ?. A ? in the specifications indicates imprecision, allowing
the verifier to optimistically assume information, such as
access to the balance field, where necessary.

void monthEnd(Account *account)
/*@ requires ? && account->balance >= 0; @/
/*@ ensures ? && account->balance >= 0; @x/ {
if (account->balance <= 100)
withdraw(account, 5);

void withdraw(Account *account, int amount)
/*@ requires acc(account->balance) &&
account->balance >= 0; @x/
/%@ ensures ?; @x/ {

Figure 2. Use of gradual verification in a C, program

The Cy program is converted to an intermediate represen-
tation (IR), that targets both C, source output and Viper’s
intermediate language, Silver. Translation to Silver has been
previously implemented for Go [10], Python [4], and Rust [2],
among others. For gradual verification, however, we need to
both convert the semantics of the Cy program into Silver and
insert verifier-provided dynamic checks into the program
before compilation.

Intermediate values (such as complex expressions in a
method call’s arguments) may need to be verified at run time,
and previous values may need to be examined to determine if
a check is necessary at run time. To meet these requirements,
the Cy program’s IR is transformed to remove re-assignments,
similar to single-static-assignment (SSA) transformations.

29

Hemant Gouni and Conrad Zimmerman

Following this transformation, the IR is translated into
Silver, which is further translated into a logical formula rep-
resentation used by Silicon [7], the verification engine for
Viper. During optimistic static verification, the verifier gen-
erates run-time checks wherever an optimistic assumption
takes place. Where possible, checks are avoided using static
information. Further, some checks are only required for spe-
cific execution paths through the program; path information
is attached to these checks. All checks are emitted to the
frontend, which translates and injects them into the Cy IR.

if (previous_account_balance <= 100)
assert(account->balance >= 0);

Figure 3. An example branch-dependent run-time check

Figure 3 shows a simple dynamic check. The withdraw
call in Figure 2 elicits this check before the termination of
monthEnd in order to ensure a valid account balance, but
only for the path denoted by the conditional branch.

Wise et al. [9] extended gradual verification to support
heap-allocated data structures using implicit dynamic frames
(IDF) [8]. In addition, Viper uses IDF in its implementation of
static verification. IDF imposes constraints on the accessibil-
ity of fields in heap-allocated data structures. Since gradual
verification may require dynamic verification of specifica-
tions, gradual verification using IDF must verify field accessi-
bility at run time. To implement this, an additional argument
is added to each method. This argument is used to specify the
fields accessible by the method. When calling a fully speci-
fied method, the caller passes only the permissions specified
in the callee’s preconditions. However, for gradually spec-
ified methods, all of the caller’s permissions are passed. A
dynamic check for field access asserts that this set contains
a tuple of the field and its parent struct reference. This al-
lows the side-effects of fully specified methods to be known
during static verification even if they call gradually specified
methods where side-effects are not specified.

4 Conclusion

In the process of extending existing verification tools to im-
plement a full gradual verification system, we encountered
additional challenges such as the addition of run-time checks
and dynamic verification of side-effects using IDF. This im-
plementation has limited applicability due to the restrictions
of Cy , but lays the groundwork for future applications in
more widely used languages. Moreover, it represents the
first toolchain that allows the use and benefits of gradual
verification to be evaluated in practice.

5 Acknowledgements

This research was supported by the National Science Foun-
dation under Grant No. CCF-1901033.

Implementation of an End-to-End Gradual Verification System

References
[1] Rob Arnold. 2010. C0, an imperative programming language for novice

—

computer scientists. Ph.D. Dissertation. Master’s thesis, Department of
Computer Science, Carnegie Mellon University.

Vytautas Astrauskas, Peter Miiller, Federico Poli, and Alexander J
Summers. 2019. Leveraging Rust types for modular specification and
verification. Proceedings of the ACM on Programming Languages 3,
OOPSLA (2019), 1-30. https://doi.org/10.1145/3360573

J. Bader, J. Aldrich, and E. Tanter. 2018. Gradual Program Verification.
In VMCAL https://doi.org/10.1007/978-3-319-73721-8_2

Marco Eilers and Peter Miiller. 2018. Nagini: a static verifier for Python.
In International Conference on Computer Aided Verification. Springer,
596-603. https://doi.org/10.1007/978-3-319-96145-3_33

Ronald Garcia, Alison M. Clark, and Eric Tanter. 2016. Abstracting
Gradual Typing. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (St. Pe-
tersburg, FL, USA) (POPL ’16). ACM, New York, NY, USA, 429-442.
https://doi.org/10.1145/2837614.2837670

Peter Milller, Malte Schwerhoff, and Alexander] Summers. 2016. Viper:
A verification infrastructure for permission-based reasoning. In In-
ternational Conference on Verification, Model Checking, and Abstract

30

[7

—

(8]

(9]

[10]

[11]

SPLASH Companion ’21, October 17-22, 2021, Chicago, IL, USA

Interpretation. Springer, 41-62.
49122-5_2

Malte H Schwerhoff. 2016. Advancing Automated, Permission-Based
Program Verification Using Symbolic Execution. Ph.D. Dissertation.
ETH Zurich. https://doi.org/10.3929/ethz-a-010835519

Jan Smans, Bart Jacobs, and Frank Piessens. 2009. Implicit dynamic
frames: Combining dynamic frames and separation logic. In European
Conference on Object-Oriented Programming. Springer, 148-172. https:
//doi.org/10.1007/978-3-642-03013-0_8

Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, FEric
Tanter, and Joshua Sunshine. 2020. Gradual Verification of Recursive
Heap Data Structures.. In OOPSLA. https://doi.org/10.1145/3428296
Felix A Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, Jodao C
Pereira, and Peter Miiller. 2021. Gobra: Modular Specification and
Verification of Go Programs. In International Conference on Computer
Aided Verification. Springer, 367-379. https://doi.org/10.1007/978-3-
030-81685-8_17

Mona Zhang and Jacob Gorenburg. 2020. Design and implemen-
tation of a gradual verifier. In Companion Proceedings of the 2020
ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity. 31-33. https:
//doi.org/10.1145/3426430.3428137

https://doi.org/10.1007/978-3-662-

https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-319-73721-8_2
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.3929/ethz-a-010835519
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1145/3428296
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1145/3426430.3428137
https://doi.org/10.1145/3426430.3428137

