Hemant Gouni

G rad ua I Ve rifi cati O n University of I\/Iinnes?ta, Twin Cities
An End-to-End Implementation Conrad Zimmerman

Brown University

M Ot | Vatl on Intermediate CCO
source.c0 1 representation | M (co Compiler)
» Static verification requires full specification of Cy,
program behavior. g,
N7
» Gradual verification allows writing specification "~ Silver | siicon
incrementally, reducing the specification burden (Viper language) (Viper verifier)

required to verify important components.

» We present the first implementation of gradual

verification in an executable language. Side-effects are reasoned about statically using
Implicit Dynamic Frames (IDF), where access to
memory locations is specified using

acc(object->field).
Example
Implementing gradual verification required

void withdrawFee(Account* account) supporting the dynamic verification of IDF concepts.

/*@ requires|acc(account->balance) &&

account->balance >= 5; @/ Program states are represented by the verifier as
/*@ ensures acc(account->balance) && formulas in a resource logic.

account->balance >= 0; @*/ o ,
Static information at the end of withdrawFee:

{

account->balance -= 5; acc(account->balance) &&

} account->balance >= 0 &&
account->balance == old(account->balance) - 5

void monthEnd(Account* account)

/*@ requires ¢ && > allows the verifier to assume anything necessary to
acc(account->balance); @*/ complete proofs.

/*@ ensures ? &&
acc(account->balance) &&

Assumption in order to statisfy the precondition of

withdrawFee:
account->balance >= 0; @*/
{ acc(account->balance) &&
if (account->balance <= 100) account->balance >= 5

withdrawFee(account);

} Wherever specifications are strengthened by the
verifier, dynamic checks are inserted into the
compiled program to ensure proper behavior at

CO - Viper - CO runtime:

» CO: a safe subset of C with support for dynamically- assert(account->balance >= 5);
verified specifications.

» Viper: a program verification framework with |
frontends which statically verify code in various Conclusion

languages.

, , _ » Unique challenges in dynamically verifying resource
» Gradual Viper: A fork of Viper with support for logic specifications.

gradual verification.
 Implemented first platform that allows gradual

» Our frontend compiles CO to Gradual Viper, statically verification to be used on real programs.
verifies the specifications, and outputs generated
CO code which includes dynamic verification of < Evaluating the runtime costs and usability of gradual

assumptions made by the gradual verifier. verification is left for future work.



