Security Reasoning via Substructural
Dependency Tracking

Hemant Gouni (with Frank Pfenning & Jonathan Aldrich)
January 15, 2026

Dependency Tracking

Hemant Gouni (with Frank Pfenning & Jonathan Aldrich)
January 15, 2026

Static Dependency Tracking

Information
Leakage

7
X 8

N

Static Dependency Tracking

Information
Leakage

7
X 8

N

— Concurrent

\ Distributed

— Systems

Static Dependency Tracking

Information Program Slicing » &
Leakage
7

X 8
N

— Concurrent

\ Distributed

— Systems

Static Dependency Tracking

Information Program Slicing » &
Leakage
7 Build Systems %
X 8
AN
— Concurrent

\ Distributed

— Systems

Static Dependency Tracking

Information Program Slicing » &
Leakage
7 Build Systems %
X 8
Reactive Programming
AN
— Concurrent

\ Distributed

— Systems

Static Dependency Tracking

Information Program Slicing » &
Leakage
4 Build Systems %
X 8
Reactive Programming
AN
Dependent how often?

— Concurrent

\ Distributed

— Systems

Static Dependency Tracking

Information Program Slicing » &
Leakage
4 Build Systems %
X 8
Reactive Programming
AN
Dependent how often?
_
Concurrent
\ + Dependency guaranteed?
Distributed

— Systems

Static Dependency Tracking

Information Program Slicing » &
Leakage
4 Build Systems %
X 8
Reactive Programming
AN
Dependent how often?
_
Concurrent
\ + Dependency guaranteed?
Distributed

- Systems What dependency order?

Reinventing Our Approach :

Reinventing Our Approach .:

4

Substructural

Affine Types in Rust

let x: String = format!("hello");

Affine Types in Rust

let x: String = format!("hello");

func1(x);

Affine Types in Rust

let x: String = format!("hello");

func1(x);
func2(x);

Affine Types in Rust

let x: String = format!("hello");

func1(x); <+— x moved here
func2(x); <+— x used here after move A

Affine Types in Rust

let x: String = format!("hello");

|
func1(x); <+— x moved here
func2(x); <+— x used here after move A

Data in Rust is ephemeral: it can only be consumed a single
time!

Affine Types in Rust

let x: String = format!("hello");

|
func1(x); <+— x moved here
func2(x); <+— x used here after move A

Data in Rust is ephemeral: it can only be consumed a single
time! Ephemerality leads to resource reasoning.

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat {® & ®1} -> nat

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat {® & ®1} -> nat

let f x = x * X

Bounded Affine Types

Generalize from single to finitely-bounded consumption.
val f : nat {® & ®1} -> nat

let f x
let f x

X * X

X * X * X

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat {® & ®1} -> nat

let f x = x * X
let f x = x * X * X
let f x = x * X * X * x <+— out of fuel for x A

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat {® & ®1} -> nat

let f x = x * X
let f x = x * X * X
let f x = x * X * X * x <+— out of fuel for x A

Observe that on the input dictates the structure of f.

Our Approach: Reverse! [2

Use output—rather than input—restrictions to create
resources.

Our Approach: Reverse! [2

Use output—rather than input—restrictions to create

resources.

val g : [©] nat -> [] nat

let g x = X * X

let g x = X * X * X

let g X = X * X * X * X <— A

Our Approach: Reverse! [2

Use output—rather than input—restrictions to create

resources.

val g : [©] nat -> [] nat

let g x = Ix * IX

let g x = Ix * Ix * IX

let g x = Ix * Ix * Ix * Ix <«+— A

The resource count increases when x is run, not merely used.

Our Approach: Reverse! [2

Use output—rather than input—restrictions to create

resources.
val g : [©] nat -> [] nat
thunk
let g x = Ix * IX
let g x = Ix * Ix * IX
let g x = Ix * Ix * Ix * Ix <«+— A

The resource count increases when x is run, not merely used.

Our Approach: Reverse! [2

Use output—rather than input—restrictions to create

resources.
val g : [©] nat -> [] nat
thunk
let g x = Ix * IX
let g x = Ix * Ix * IX
let g x = Ix * Ix * IX * IX +— A

force

The resource count increases when x is run, not merely used.

Our Approach: Reverse! [2

Use output—rather than input—restrictions to create

resources.

val g : [©] nat -> [] nat

let g x = Ix * IX

let g x = Ix * Ix * Ix

let g x = Ix * Ix * Ix * Ix <«+— A
let g x = bind y to !x iny xy *xy *y

The resource count increases when x is run, not merely used.

Our Approach: Reverse! [2

Use output—rather than input—restrictions to create

resources.
val g : [©] nat -> [] nat

let g x = Ix * IX

let ¢ x = !x * !x % IX

let g x = Ix * Ix * Ix * Ix <«+— A
let g x = bind y to !x iny *y *xy *y

L

=
The resource count increases when x is run, not merely used.

Our Approach: Reverse! [2

Use output—rather than input—restrictions to create

resources.
val g : [©] nat -> [] nat

let g x = Ix * IX

let g x = Ix * Ix * Ix

let g x = Ix * Ix * Ix * Ix <«+— A
let g x = bind y to !x iny *y *xy *y

L

= : nat
The resource count increases when x is run, not merely used.

Aside: Why the focus on computations?

val f : nat {8 & B} -> nat

val g : [@] nat -> [] nat

Aside: Why the focus on computations?

gets consumed by f

val f : nat {8 & B} -> nat

val g : [@] nat -> [] nat

Aside: Why the focus on computations?

gets consumed by f

val f : nat {8 & B} -> nat

val g : [@] nat -> [] nat

gets produced by g

Aside: Why the focus on computations?

gets consumed by f

val f : nat {8 & B} -> nat
val g : [@] nat -> [] nat
gets produced by g

Justification: Consumption vs Production
Coeffects regard consumption via variable use.

Effects regard production via running computations.

Examples

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig

end

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource &

end

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig

affine resource &f

val check : string -> [£f] bool
end

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource &f
val check : string -> [£f] bool

open PasswordChecker as pc

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource &f
val check : string -> [£f] bool

open PasswordChecker as pc

let _ : [pc.&¥] bool = pc.check "faxe"

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource &f
val check : string -> [£f] bool

open PasswordChecker as pc

let _ : [pc.&¥] bool = pc.check "faxe"
let _ : [pc.& pc.&] bool =
pc.check "faxe" && pc.check "tibe"

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource &f
val check : string -> [£f] bool

open PasswordChecker as pc

let _ : [pc.&¥] bool = pc.check "faxe"
let _ : [pc.& pc.&] bool =

pc.check "faxe" && pc.check "tibe"
let _ : [pc.&¥] bool =

pc.check "faxe" && pc.check "tibe"

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource &f
val check : string -> [£f] bool

open PasswordChecker as pc

let _ : [pc.&¥] bool = pc.check "faxe"
let _ : [pc.& pc.&] bool =

pc.check "faxe" && pc.check "tibe"
let _ : [pc.&¥] bool =

pc.check "faxe" && pc.check "tibe" A

Example: Quantity-Sensitive Leakage

let _ : [pc.i¥] bool = pc.check "faxe"

Example: Quantity-Sensitive Leakage

let _ : [pc.i¥ pc.t¥] bool = pc.check "faxe"

Example: Capabilities

[...] ———— [... 9]

Example: Capabilities

[...] —¢— [... ?]

Example: Capabilities

[...] —¢— [... ?]

module Authorize : sig

end

Example: Capabilities

[...] —¢— [... ?]

module Authorize : sig
strict resource W

end

Example: Capabilities

[...] —¢— [... ?]

module Authorize : sig
strict resource ¥
val authenticate : string ->
unit + [W] unit
end

Example: Capabilities

[...] —¢— [... ?]

module Authorize : sig
strict resource ¥
val authenticate : string ->
unit + [W] unit

let secured : [#] int ->

Example: Capabilities

[...] —¢— [... ¥]

module Authorize : sig
strict resource ¥
val authenticate : string ->
unit + [W] unit

let secured : [#] int ->

case authenticate "argaven" with
| Left _ ->

| Right (tok : [®] unit) -> secured (4 <~ tok)

Example: Protocols, or seccomp

high privilege low privilege
» drop

~

Example: Protocols, or seccomp

high privilege low privilege

module DropProto : sig

end

Example: Protocols, or seccomp

high privilege low privilege

module DropProto : sig
immobile resource drp, hi

end

Example: Protocols, or seccomp

high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi

end

Example: Protocols, or seccomp

high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo

end

Example: Protocols, or seccomp

high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val 1o : [lo] unit

end

Example: Protocols, or seccomp

high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val 1o : [lo] unit

let _ : [hi drp lo] .. = 'hi; !lo; !drop; !lo

Example: Protocols, or seccomp

high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val 1o : [lo] unit

let _ : [hi drp lo] ..
let _ : [hi drp lo] ..

'hi; !lo; !drop; !lo
'To; 'hi; !1lo; 'hi

Example: Protocols, or seccomp

high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val 1o : [lo] unit

end

let [hi drp lo] = 'hi; !lo; !drop; !'lo

let [hi drp lo] = 1lo; !'hi; !1lo; !'hi

let [hi drp lo] = 'hi; !drop; !lo; 5

Example: Protocols, or seccomp

high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val 1o : [lo] unit

end

let [hi drp lo] = 'hi; !lo; !drop; !'lo

let [hi drp lo] = 1lo; !'hi; !1lo; !'hi

let [hi drp lo] = 'hi; !drop; !lo; 'hi A

Versus Conventional Resource Reasoning

The production perspective naturally characterizes a different
range of resources than the consumption one:

Versus Conventional Resource Reasoning

The production perspective naturally characterizes a different
range of resources than the consumption one:

$ Quantity-Sensitive Leakage

Versus Conventional Resource Reasoning

The production perspective naturally characterizes a different
range of resources than the consumption one:

$ Quantity-Sensitive Leakage
¥ Authorization via Capabilities

Versus Conventional Resource Reasoning

The production perspective naturally characterizes a different
range of resources than the consumption one:

$ Quantity-Sensitive Leakage
¥ Authorization via Capabilities

drp seccomp-style sandboxing

Versus Conventional Resource Reasoning

The production perspective naturally characterizes a different
range of resources than the consumption one:

$ Quantity-Sensitive Leakage
¥ Authorization via Capabilities

drp seccomp-style sandboxing

More examples in the paper!

= 3-in-1: {Capability, Quantity, Protocol} Safety

Substructurality via Subsumption

- Weakening: [...] —— [... ¥]

10

Substructurality via Subsumption

- Weakening: [...] —X— [... 9]

10

Substructurality via Subsumption

- Weakening: [...] C [... 9]

10

Substructurality via Subsumption

- Weakening: [...] Z [... 9]

10

Substructurality via Subsumption

- Weakenine: [...] Z [... 9] — strict

10

Substructurality via Subsumption

- Weakening: [...] Z [... ¥] — strict
- Contraction: [&1 C [&7]

10

Substructurality via Subsumption

- Weakenine: [...] Z [... 9] — strict
- Contraction: [&1 z [&F]

10

Substructurality via Subsumption

- Weakening: [...] Z [... 9] — strict
- contraction: [&1 z [&F] — affine

10

Substructurality via Subsumption

- Weakening: [...] Z [... ¥] — strict
- contraction: [&1 z [&F] — affine
- Exchange: [hi drp] C [drp hil

10

Substructurality via Subsumption

- Weakening: [...] Z [... 9] — strict
- contraction: [&1 z [&F] — affine

- Exehange: [hi drp] Z [drp hil

10

Substructurality via Subsumption

- Weakening: [...] Z [... 9] — strict
- contraction: [&1 z [&F] — affine

- Exehange: [hi drp] Z [drp hi] = immobile

10

Substructurality via Subsumption

- Weakening: [...] Z [... 9] — strict
- contraction: [&1 z [&F] — affine

- Exehange: [hi drp] Z [drp hi] = immobile

Structural +——
\ \
+— NILEEl

I+

+\W +C +——

\W/
L C Rl Ordlered |

10

Soundness Theorem

Ife : [al a2 ...] Athen !e—*v producing resources
[bl1 b2 ...]and [b1 b2 ...1C[al a2 ...I.

n

Soundness Theorem

well-typed under
expected resources
|

[1
Ife : [al a2 ...] Athen !e—*v producing resources
[bl1 b2 ...]and [b1 b2 ...1C[al a2 ...I.

n

Soundness Theorem

well-typed under evaluates to
expected resources a value
|

[1
Ife : [al a2 ...] Athen !e—*v producing resources
[bl1 b2 ...]and [b1 b2 ...1C[al a2 ...I.

n

Soundness Theorem

well-typed under evaluates to
expected resources a value
|

[1
Ife : [al a2 ...] Athen !e—*v producing resources
[bl1 b2 ...]and [b1 b2 ...1C[al a2 ...I.

resources
witnessed

n

Soundness Theorem

well-typed under evaluates to
expected resources a value
|

[]
Ife : [al a2 ...] Athen !e—*v producing resources
[bl b2 ...]Jand [b1 b2 ...1Cc[al a2 ...].
| J
I
resources compatible with
witnessed resources expected

n

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket.

12

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability [...] is not allowable; however,
unlike the case for tickets, reproduction [...] is legal.

12

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket.

12

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket.

ife: [V al a2 ...] Awhere #isstrictthen !e+——*v
produces resources [bl b2 ...] > #.

12

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket.

ife: [W al a2 ...] Awhere ®isstrictthen !e+——*v
produces resources [bl b2 ...] > #.

12

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket.

ife: [¥ al a2 ...] Awhere #isstrict then !e+——*v
produces resources [bl b2 ...] > #.

12

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket.

ife: [V al a2 ...] Awhere #isstrictthen !e+——*v
produces resources [bl b2 ...] > #.

12

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket.

ife: [V al a2 ...] Awhere #isstrictthen !e+——*v
produces resources [bl b2 ...] > ¥.

12

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket.

ife: [V al a2 ...] Awhere #isstrictthen !e+——*v
produces resources [bl b2 ...] > #.

Proof Sketch
[b1 b2 ...]C[¥ a1 a2 ...] [...1z[... ¥]

12

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket.

ife: [V al a2 ...] Awhere #isstrictthen !e+——*v
produces resources [bl b2 ...] > #.

Proof Sketch
[b1 b2 ...]C[¥ a1 a2 ...] [...1z[... ¥]
| J
I
by soundness

12

Soundness Theorem =- Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket.

ife: [V al a2 ...] Awhere #isstrictthen !e+——*v
produces resources [bl b2 ...] > #.

Proof Sketch

I[b1 b2 ...]1C[¥ a1 a2...? [...1zZ[... /:!

by soundness by strictness

12

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where £ affine then
le —s* v produces [b1l b2 ...] with k& where k < n.

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...]1 Awith n & where & affine then
le —s* v produces [b1l b2 ...] with k& where k < n.

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where & affine then
le —s* v produces [b1l b2 ...] with k& where k < n.

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where & affine then
le —s* v produces [b1l b2 ...] with k& where k < n.

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where £ affine then
le —s* v produces [b1l b2 ...] with k& where k < n.

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where £ affine then
le —s* v produces [b1l b2 ...] with k& where k < n.

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where £ affine then
le —s* v produces [b1 b2 ...] with k & where k < n.

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where £ affine then
le —s* v produces [b1 b2 ...] with k& where k < n.

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where £ affine then
le —s* v produces [b1l b2 ...] with k& where k < n.

Proof Sketch
[bl1 b2 ...]C[al a2 ...] (& &1z [&]

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where £ affine then
le —s* v produces [b1l b2 ...] with k& where k < n.

Proof Sketch
I[b1 b2 ...1C [a1 az...]I (& &1z [&]

I
by soundness

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where £ affine then
le —s* v produces [b1l b2 ...] with k& where k < n.

Proof Sketch
I[b1 b2 ...1C [a1 az...]I E? ?]z[?]I
[

I
by soundness by affinity

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where & linear then
le —s* v produces [b1l b2 ...] with k& where k = n.

Proof Sketch
I[b1 b2 ...1C [a1 az...]I E? ?]z[?]I
[

I
by soundness by affinity

13

Soundness Theorem = Quantity Safety

Ife: [al a2 ...] Awith n & where & linear then
le —s* v produces [b1l b2 ...] with k& where k = n.

Proof Sketch
I[bl b2 ...1C [a1 az...]I E? ?]z[?]I
[

I
by soundness by affinity

[.1gl... &)
by strilctness

13

Soundness Theorem = Protocol Safety

Ife : [al a2 a3 ...] Awhereal a2 ordered then
le —* v produces [b1 b2 b3 ...].

14

Soundness Theorem = Protocol Safety

lacking all structural rules
|

[|
Ife : [al a2 a3 ...] Awhereal a2 ordered then
le —* v produces [b1 b2 b3 ...].

14

Soundness Theorem = Protocol Safety

lacking all structural rules
|

[|
Ife : [al a2 a3 ...] Awhereal a2 ordered then
le —* v produces [al a2 b3 ...].

14

Soundness Theorem = Protocol Safety

lacking all structural rules
|

[|
Ife : [al a2 a3 ...] Awhereal a2 ordered then
le —* v produces [al a2 b3 ...].

Proof Sketch: Analogous from soundness + weakening,
contraction, exchange

14

More in the paper!

Two further structural rules not mentioned here

15

More in the paper!

Two further structural rules not mentioned here

AT Constructive Kripke semantics as a programming language

15

More in the paper!

Two further structural rules not mentioned here
AT Constructive Kripke semantics as a programming language

Shifting between substructual modes using quantification,
correspondence to shifts in LNL + adjoint logic

15

More in the paper!

Two further structural rules not mentioned here
AT Constructive Kripke semantics as a programming language

Shifting between substructual modes using quantification,
correspondence to shifts in LNL + adjoint logic

=1 General proof technique capturing logical relations for
open-ended effects

15

More in the paper!

Two further structural rules not mentioned here
AT Constructive Kripke semantics as a programming language

Shifting between substructual modes using quantification,
correspondence to shifts in LNL + adjoint logic

=1 General proof technique capturing logical relations for
open-ended effects

Il More examples!

15

Takeaway: The effectful view on substructural
reasoning newly unifies a set of old tools

hsgouni@cs.cmu.edu / @hgouni@hci.social

https://hci.social/@hgouni

	Reinventing Our Approach [height=1.1`X]cook<2-> Substructural Dependency Tracking
	Examples
	[height=1.1`X]shoppingcart 3-in-1: {Capability, Quantity, Protocol} Safety

