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Affine Types in Rust

let x: String = format!("hello");

|
func1(x); <+— x moved here
func2(x); <+— x used here after move A

Data in Rust is ephemeral: it can only be consumed a single
time! Ephemerality leads to resource reasoning.
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Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat {® & ®1} -> nat

let f x = x * X
let f x = x * X * X
let f x = x * X * X * x <+— out of fuel for x A

Observe that  on the input dictates the structure of f.
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val g : [©] nat -> [ ] nat

let g x = Ix * IX

let g x = Ix * Ix * Ix

let g x = Ix * Ix * Ix * Ix <«+— A
let g x = bind y to !x iny *y *xy *y

L

= : nat
The resource count increases when x is run, not merely used.
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Aside: Why the focus on computations?

gets consumed by f

val f : nat {8 & B} -> nat
val g : [@] nat -> [ ] nat
gets produced by g

Justification: Consumption vs Production
Coeffects regard consumption via variable use.

Effects regard production via running computations.
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let _ : [pc.i¥ pc.t¥] bool = pc.check "faxe"
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Example: Capabilities

[...] —¢— [... ¥]

module Authorize : sig
strict resource ¥
val authenticate : string ->
unit + [W] unit

let secured : [#] int ->

case authenticate "argaven" with
| Left _ ->

| Right (tok : [®] unit) -> secured (4 <~ tok)
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high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val 1o : [lo] unit

end

let [hi drp lo] = 'hi; !lo; !drop; !'lo

let [hi drp lo] = 1lo; !'hi; !1lo; !'hi

let [hi drp lo] = 'hi; !drop; !lo; 'hi A
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The production perspective naturally characterizes a different
range of resources than the consumption one:

$ Quantity-Sensitive Leakage
¥ Authorization via Capabilities

drp seccomp-style sandboxing

More examples in the paper!
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- Weakening: [...] Z [... 9] — strict
- contraction: [ &1 z [&F] — affine

- Exehange: [hi drp] Z [drp hi] = immobile
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Soundness Theorem

well-typed under evaluates to
expected resources a value
|

[ ]
Ife : [al a2 ...] Athen !e—*v producing resources
[bl b2 ...]Jand [b1 b2 ...1Cc[al a2 ...].
| J
I
resources compatible with
witnessed resources expected

n
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Soundness Theorem = Protocol Safety

lacking all structural rules
|

[ |
Ife : [al a2 a3 ...] Awhereal a2 ordered then
le —* v produces [al a2 b3 ...].

Proof Sketch: Analogous from soundness + weakening,
contraction, exchange
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Shifting between substructual modes using quantification,
correspondence to shifts in LNL + adjoint logic

=1 General proof technique capturing logical relations for
open-ended effects

Il More examples!
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Takeaway: The effectful view on substructural
reasoning newly unifies a set of old tools

hsgouni@cs.cmu.edu / @hgouni@hci.social


https://hci.social/@hgouni

	Reinventing Our Approach [height=1.1`X]cook<2->    Substructural  Dependency Tracking
	Examples
	[height=1.1`X]shoppingcart 3-in-1: {Capability, Quantity, Protocol} Safety

