
Security Reasoning via Substructural
Dependency Tracking

Hemant Gouni (with Frank Pfenning & Jonathan Aldrich)
January 15, 2026

Security Reasoning via Substructural
Dependency Tracking

Hemant Gouni (with Frank Pfenning & Jonathan Aldrich)
January 15, 2026

Static Dependency Tracking

=⇒=⇒

=⇒

=⇒

Information
Leakage

Concurrent
+

Distributed
Systems

Program Slicing

Build Systems

Reactive Programming

Dependent how often?

Dependency guaranteed?

What dependency order?

1

Static Dependency Tracking

=⇒=⇒

=⇒

=⇒

Information
Leakage

Concurrent
+

Distributed
Systems

Program Slicing

Build Systems

Reactive Programming

Dependent how often?

Dependency guaranteed?

What dependency order?

1

Static Dependency Tracking

=⇒=⇒

=⇒

=⇒

Information
Leakage

Concurrent
+

Distributed
Systems

Program Slicing

Build Systems

Reactive Programming

Dependent how often?

Dependency guaranteed?

What dependency order?

1

Static Dependency Tracking

=⇒=⇒

=⇒

=⇒

Information
Leakage

Concurrent
+

Distributed
Systems

Program Slicing

Build Systems

Reactive Programming

Dependent how often?

Dependency guaranteed?

What dependency order?

1

Static Dependency Tracking

=⇒=⇒

=⇒

=⇒

Information
Leakage

Concurrent
+

Distributed
Systems

Program Slicing

Build Systems

Reactive Programming

Dependent how often?

Dependency guaranteed?

What dependency order?

1

Static Dependency Tracking

=⇒=⇒

=⇒

=⇒

Information
Leakage

Concurrent
+

Distributed
Systems

Program Slicing

Build Systems

Reactive Programming

Dependent how often?

Dependency guaranteed?

What dependency order?

1

Static Dependency Tracking

=⇒=⇒

=⇒

=⇒

Information
Leakage

Concurrent
+

Distributed
Systems

Program Slicing

Build Systems

Reactive Programming

Dependent how often?

Dependency guaranteed?

What dependency order?

1

Static Dependency Tracking

=⇒=⇒

=⇒

=⇒

Information
Leakage

Concurrent
+

Distributed
Systems

Program Slicing

Build Systems

Reactive Programming

Dependent how often?

Dependency guaranteed?

What dependency order?

1

Reinventing Our Approach

⇓
Substructural

Dependency Tracking

Reinventing Our Approach
⇓

Substructural
Dependency Tracking

Affine Types in Rust

let x: String = format!("hello");

func1(x); ←− x moved here
func2(x); ←− x used here after move �

Data in Rust is ephemeral: it can only be consumed a single
time! Ephemerality leads to resource reasoning.

2

Affine Types in Rust

let x: String = format!("hello");

func1(x);

←− x moved here
func2(x); ←− x used here after move �

Data in Rust is ephemeral: it can only be consumed a single
time! Ephemerality leads to resource reasoning.

2

Affine Types in Rust

let x: String = format!("hello");

func1(x);

←− x moved here

func2(x);

←− x used here after move �

Data in Rust is ephemeral: it can only be consumed a single
time! Ephemerality leads to resource reasoning.

2

Affine Types in Rust

let x: String = format!("hello");

func1(x); ←− x moved here
func2(x); ←− x used here after move �

Data in Rust is ephemeral: it can only be consumed a single
time! Ephemerality leads to resource reasoning.

2

Affine Types in Rust

let x: String = format!("hello");

func1(x); ←− x moved here
func2(x); ←− x used here after move �

Data in Rust is ephemeral: it can only be consumed a single
time!

Ephemerality leads to resource reasoning.

2

Affine Types in Rust

let x: String = format!("hello");

func1(x); ←− x moved here
func2(x); ←− x used here after move �

Data in Rust is ephemeral: it can only be consumed a single
time! Ephemerality leads to resource reasoning.

2

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat { } -> nat

let f x = x * x
let f x = x * x * x
let f x = x * x * x * x ←− out of fuel for x �

Observe that on the input dictates the structure of f.

3

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat { } -> nat

let f x = x * x
let f x = x * x * x
let f x = x * x * x * x ←− out of fuel for x �

Observe that on the input dictates the structure of f.

3

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat { } -> nat

let f x = x * x

let f x = x * x * x
let f x = x * x * x * x ←− out of fuel for x �

Observe that on the input dictates the structure of f.

3

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat { } -> nat

let f x = x * x
let f x = x * x * x

let f x = x * x * x * x ←− out of fuel for x �

Observe that on the input dictates the structure of f.

3

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat { } -> nat

let f x = x * x
let f x = x * x * x
let f x = x * x * x * x ←− out of fuel for x �

Observe that on the input dictates the structure of f.

3

Bounded Affine Types

Generalize from single to finitely-bounded consumption.

val f : nat { } -> nat

let f x = x * x
let f x = x * x * x
let f x = x * x * x * x ←− out of fuel for x �

Observe that on the input dictates the structure of f.

3

Our Approach: Reverse!

Use output—rather than input—restrictions to create
resources.

thunk

force
⇒ : nat

4

Our Approach: Reverse!

Use output—rather than input—restrictions to create
resources.

thunk

force
⇒ : nat

val g : [] nat -> [] nat

let g x = x * x
let g x = x * x * x
let g x = x * x * x * x ←− �

4

Our Approach: Reverse!

Use output—rather than input—restrictions to create
resources.

thunk

force
⇒ : nat

val g : [] nat -> [] nat

let g x = !x * !x
let g x = !x * !x * !x
let g x = !x * !x * !x * !x ←− �

The resource count increases when x is run, not merely used.

4

Our Approach: Reverse!

Use output—rather than input—restrictions to create
resources.

thunk

force
⇒ : nat

val g : [] nat -> [] nat

let g x = !x * !x
let g x = !x * !x * !x
let g x = !x * !x * !x * !x ←− �

The resource count increases when x is run, not merely used.

4

Our Approach: Reverse!

Use output—rather than input—restrictions to create
resources.

thunk

force

⇒ : nat

val g : [] nat -> [] nat

let g x = !x * !x
let g x = !x * !x * !x
let g x = !x * !x * !x * !x ←− �

The resource count increases when x is run, not merely used.

4

Our Approach: Reverse!

Use output—rather than input—restrictions to create
resources.

thunk

force
⇒ : nat

val g : [] nat -> [] nat

let g x = !x * !x
let g x = !x * !x * !x
let g x = !x * !x * !x * !x ←− �

let g x = bind y to !x in y * y * y * y

The resource count increases when x is run, not merely used.

4

Our Approach: Reverse!

Use output—rather than input—restrictions to create
resources.

thunk

force

⇒

: nat

val g : [] nat -> [] nat

let g x = !x * !x
let g x = !x * !x * !x
let g x = !x * !x * !x * !x ←− �

let g x = bind y to !x in y * y * y * y

The resource count increases when x is run, not merely used.

4

Our Approach: Reverse!

Use output—rather than input—restrictions to create
resources.

thunk

force

⇒ : nat

val g : [] nat -> [] nat

let g x = !x * !x
let g x = !x * !x * !x
let g x = !x * !x * !x * !x ←− �

let g x = bind y to !x in y * y * y * y

The resource count increases when x is run, not merely used.

4

Aside: Why the focus on computations?

val f : nat { } -> nat

gets consumed by f

val g : [] nat -> [] nat

gets produced by g

Justification: Consumption vs Production
Coeffects regard consumption via variable use.

Effects regard production via running computations.

5

Aside: Why the focus on computations?

val f : nat { } -> nat

gets consumed by f

val g : [] nat -> [] nat

gets produced by g

Justification: Consumption vs Production
Coeffects regard consumption via variable use.

Effects regard production via running computations.

5

Aside: Why the focus on computations?

val f : nat { } -> nat

gets consumed by f

val g : [] nat -> [] nat

gets produced by g

Justification: Consumption vs Production
Coeffects regard consumption via variable use.

Effects regard production via running computations.

5

Aside: Why the focus on computations?

val f : nat { } -> nat

gets consumed by f

val g : [] nat -> [] nat

gets produced by g

Justification: Consumption vs Production
Coeffects regard consumption via variable use.

Effects regard production via running computations.

5

Examples

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig

affine resource
val check : string -> [] bool

end

open PasswordChecker as pc

let _ : [pc.] bool = pc.check "faxe"
let _ : [pc. pc.] bool =

pc.check "faxe" && pc.check "tibe"
let _ : [pc.] bool =

pc.check "faxe" && pc.check "tibe"

6

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource

val check : string -> [] bool

end

open PasswordChecker as pc

let _ : [pc.] bool = pc.check "faxe"
let _ : [pc. pc.] bool =

pc.check "faxe" && pc.check "tibe"
let _ : [pc.] bool =

pc.check "faxe" && pc.check "tibe"

6

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource
val check : string -> [] bool

end

open PasswordChecker as pc

let _ : [pc.] bool = pc.check "faxe"
let _ : [pc. pc.] bool =

pc.check "faxe" && pc.check "tibe"
let _ : [pc.] bool =

pc.check "faxe" && pc.check "tibe"

6

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource
val check : string -> [] bool

end

open PasswordChecker as pc

let _ : [pc.] bool = pc.check "faxe"
let _ : [pc. pc.] bool =

pc.check "faxe" && pc.check "tibe"
let _ : [pc.] bool =

pc.check "faxe" && pc.check "tibe"

6

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource
val check : string -> [] bool

end

open PasswordChecker as pc

let _ : [pc.] bool = pc.check "faxe"

let _ : [pc. pc.] bool =
pc.check "faxe" && pc.check "tibe"

let _ : [pc.] bool =
pc.check "faxe" && pc.check "tibe"

6

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource
val check : string -> [] bool

end

open PasswordChecker as pc

let _ : [pc.] bool = pc.check "faxe"
let _ : [pc. pc.] bool =

pc.check "faxe" && pc.check "tibe"

let _ : [pc.] bool =
pc.check "faxe" && pc.check "tibe"

6

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource
val check : string -> [] bool

end

open PasswordChecker as pc

let _ : [pc.] bool = pc.check "faxe"
let _ : [pc. pc.] bool =

pc.check "faxe" && pc.check "tibe"
let _ : [pc.] bool =

pc.check "faxe" && pc.check "tibe"

6

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource
val check : string -> [] bool

end

open PasswordChecker as pc

let _ : [pc.] bool = pc.check "faxe"
let _ : [pc. pc.] bool =

pc.check "faxe" && pc.check "tibe"
let _ : [pc.] bool =

pc.check "faxe" && pc.check "tibe" �

6

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource
val check : string -> [] bool

end

open PasswordChecker as pc

let _ : [pc.] bool = pc.check "faxe"
let _ : [pc. pc.] bool =

pc.check "faxe" && pc.check "tibe"
let _ : [pc.] bool =

pc.check "faxe" && pc.check "tibe" �

6

Example: Quantity-Sensitive Leakage

module PasswordChecker : sig
affine resource
val check : string -> [] bool

end

open PasswordChecker as pc

let _ : [pc. pc.] bool = pc.check "faxe"
let _ : [pc. pc.] bool =

pc.check "faxe" && pc.check "tibe"
let _ : [pc.] bool =

pc.check "faxe" && pc.check "tibe" �

6

Example: Capabilities

[. . .] 7−−−−−−−→ [. . .]

module Authorize : sig

strict resource
val authenticate : string ->

unit + [] unit

end

let secured : [] int -> ...

case authenticate "argaven" with
| Left _ -> ...
| Right (tok : [] unit) -> secured (4 <~ tok)

7

Example: Capabilities

[. . .] 7−−−−−−−→ [. . .]

module Authorize : sig

strict resource
val authenticate : string ->

unit + [] unit

end

let secured : [] int -> ...

case authenticate "argaven" with
| Left _ -> ...
| Right (tok : [] unit) -> secured (4 <~ tok)

7

Example: Capabilities

[. . .] 7−−−−−−−→ [. . .]

module Authorize : sig

strict resource
val authenticate : string ->

unit + [] unit

end

let secured : [] int -> ...

case authenticate "argaven" with
| Left _ -> ...
| Right (tok : [] unit) -> secured (4 <~ tok)

7

Example: Capabilities

[. . .] 7−−−−−−−→ [. . .]

module Authorize : sig
strict resource

val authenticate : string ->
unit + [] unit

end

let secured : [] int -> ...

case authenticate "argaven" with
| Left _ -> ...
| Right (tok : [] unit) -> secured (4 <~ tok)

7

Example: Capabilities

[. . .] 7−−−−−−−→ [. . .]

module Authorize : sig
strict resource
val authenticate : string ->

unit + [] unit
end

let secured : [] int -> ...

case authenticate "argaven" with
| Left _ -> ...
| Right (tok : [] unit) -> secured (4 <~ tok)

7

Example: Capabilities

[. . .] 7−−−−−−−→ [. . .]

module Authorize : sig
strict resource
val authenticate : string ->

unit + [] unit
end

let secured : [] int -> ...

case authenticate "argaven" with
| Left _ -> ...
| Right (tok : [] unit) -> secured (4 <~ tok)

7

Example: Capabilities

[. . .] 7−−−−−−−→ [. . .]

module Authorize : sig
strict resource
val authenticate : string ->

unit + [] unit
end

let secured : [] int -> ...

case authenticate "argaven" with
| Left _ -> ...
| Right (tok : [] unit) -> secured (4 <~ tok) 7

Example: Protocols, or seccomp

. . . drop . . .
high privilege low privilege

module DropProto : sig

resource drp, hi

structural resource lo

val drop : [drp] unit
val hi : [hi] unit
val lo : [lo] unit

end

let _ : [hi drp lo] … = !hi; !lo; !drop; !lo
let _ : [hi drp lo] … = !lo; !hi; !lo; !hi
let _ : [hi drp lo] … = !hi; !drop; !lo; !hi

�

8

Example: Protocols, or seccomp

. . . drop . . .
high privilege low privilege

module DropProto : sig

resource drp, hi

structural resource lo

val drop : [drp] unit
val hi : [hi] unit
val lo : [lo] unit

end

let _ : [hi drp lo] … = !hi; !lo; !drop; !lo
let _ : [hi drp lo] … = !lo; !hi; !lo; !hi
let _ : [hi drp lo] … = !hi; !drop; !lo; !hi

�

8

Example: Protocols, or seccomp

. . . drop . . .
high privilege low privilege

module DropProto : sig
immobile resource drp, hi

structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val lo : [lo] unit

end

let _ : [hi drp lo] … = !hi; !lo; !drop; !lo
let _ : [hi drp lo] … = !lo; !hi; !lo; !hi
let _ : [hi drp lo] … = !hi; !drop; !lo; !hi

�

8

Example: Protocols, or seccomp

. . . drop . . .
high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi

structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val lo : [lo] unit

end

let _ : [hi drp lo] … = !hi; !lo; !drop; !lo
let _ : [hi drp lo] … = !lo; !hi; !lo; !hi
let _ : [hi drp lo] … = !hi; !drop; !lo; !hi

�

8

Example: Protocols, or seccomp

. . . drop . . .
high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo

val drop : [drp] unit
val hi : [hi] unit
val lo : [lo] unit

end

let _ : [hi drp lo] … = !hi; !lo; !drop; !lo
let _ : [hi drp lo] … = !lo; !hi; !lo; !hi
let _ : [hi drp lo] … = !hi; !drop; !lo; !hi

�

8

Example: Protocols, or seccomp

. . . drop . . .
high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val lo : [lo] unit

end

let _ : [hi drp lo] … = !hi; !lo; !drop; !lo
let _ : [hi drp lo] … = !lo; !hi; !lo; !hi
let _ : [hi drp lo] … = !hi; !drop; !lo; !hi

�

8

Example: Protocols, or seccomp

. . . drop . . .
high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val lo : [lo] unit

end

let _ : [hi drp lo] … = !hi; !lo; !drop; !lo

let _ : [hi drp lo] … = !lo; !hi; !lo; !hi
let _ : [hi drp lo] … = !hi; !drop; !lo; !hi

�

8

Example: Protocols, or seccomp

. . . drop . . .
high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val lo : [lo] unit

end

let _ : [hi drp lo] … = !hi; !lo; !drop; !lo
let _ : [hi drp lo] … = !lo; !hi; !lo; !hi

let _ : [hi drp lo] … = !hi; !drop; !lo; !hi

�

8

Example: Protocols, or seccomp

. . . drop . . .
high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val lo : [lo] unit

end

let _ : [hi drp lo] … = !hi; !lo; !drop; !lo
let _ : [hi drp lo] … = !lo; !hi; !lo; !hi
let _ : [hi drp lo] … = !hi; !drop; !lo;

�

8

Example: Protocols, or seccomp

. . . drop . . .
high privilege low privilege

module DropProto : sig
(immobile) resource drp, hi
structural resource lo
val drop : [drp] unit
val hi : [hi] unit
val lo : [lo] unit

end

let _ : [hi drp lo] … = !hi; !lo; !drop; !lo
let _ : [hi drp lo] … = !lo; !hi; !lo; !hi
let _ : [hi drp lo] … = !hi; !drop; !lo; !hi � 8

Versus Conventional Resource Reasoning

The production perspective naturally characterizes a different
range of resources than the consumption one:

Quantity-Sensitive Leakage
Authorization via Capabilities

drp seccomp-style sandboxing

More examples in the paper!

9

Versus Conventional Resource Reasoning

The production perspective naturally characterizes a different
range of resources than the consumption one:

Quantity-Sensitive Leakage

Authorization via Capabilities
drp seccomp-style sandboxing

More examples in the paper!

9

Versus Conventional Resource Reasoning

The production perspective naturally characterizes a different
range of resources than the consumption one:

Quantity-Sensitive Leakage
Authorization via Capabilities

drp seccomp-style sandboxing

More examples in the paper!

9

Versus Conventional Resource Reasoning

The production perspective naturally characterizes a different
range of resources than the consumption one:

Quantity-Sensitive Leakage
Authorization via Capabilities

drp seccomp-style sandboxing

More examples in the paper!

9

Versus Conventional Resource Reasoning

The production perspective naturally characterizes a different
range of resources than the consumption one:

Quantity-Sensitive Leakage
Authorization via Capabilities

drp seccomp-style sandboxing

More examples in the paper!

9

3-in-1: {Capability, Quantity, Protocol} Safety

Substructurality via Subsumption

• Weakening: [. . .] 7−−−−−−−→ [. . .]

=⇒
strict

• Contraction: [] v []

=⇒ affine

• Exchange: [hi drp] v [drp hi]

=⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] 7−−−−−−−→ [. . .]

=⇒
strict

• Contraction: [] v []

=⇒ affine

• Exchange: [hi drp] v [drp hi]

=⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] v [. . .]

=⇒ strict
• Contraction: [] v []

=⇒ affine

• Exchange: [hi drp] v [drp hi]

=⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] 6v [. . .]

=⇒ strict
• Contraction: [] v []

=⇒ affine

• Exchange: [hi drp] v [drp hi]

=⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] 6v [. . .] =⇒ strict

• Contraction: [] v []

=⇒ affine

• Exchange: [hi drp] v [drp hi]

=⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] 6v [. . .] =⇒ strict
• Contraction: [] v []

=⇒ affine
• Exchange: [hi drp] v [drp hi]

=⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] 6v [. . .] =⇒ strict
• Contraction: [] 6v []

=⇒ affine
• Exchange: [hi drp] v [drp hi]

=⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] 6v [. . .] =⇒ strict
• Contraction: [] 6v [] =⇒ affine

• Exchange: [hi drp] v [drp hi]

=⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] 6v [. . .] =⇒ strict
• Contraction: [] 6v [] =⇒ affine
• Exchange: [hi drp] v [drp hi]

=⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] 6v [. . .] =⇒ strict
• Contraction: [] 6v [] =⇒ affine
• Exchange: [hi drp] 6v [drp hi]

=⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] 6v [. . .] =⇒ strict
• Contraction: [] 6v [] =⇒ affine
• Exchange: [hi drp] 6v [drp hi] =⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Substructurality via Subsumption

• Weakening: [. . .] 6v [. . .] =⇒ strict
• Contraction: [] 6v [] =⇒ affine
• Exchange: [hi drp] 6v [drp hi] =⇒ immobile

Structural Affine

Strict Linear

+W +C +W

+C Ordered

+E

+W

+C

10

Soundness Theorem

If e : [a1 a2 . . .] A then !e 7−→∗ v producing resources
[b1 b2 . . .] and [b1 b2 . . .] v [a1 a2 . . .].

well-typed under
expected resources

evaluates to
a value

resources
witnessed

compatible with
resources expected

11

Soundness Theorem

If e : [a1 a2 . . .] A then !e 7−→∗ v producing resources
[b1 b2 . . .] and [b1 b2 . . .] v [a1 a2 . . .].

well-typed under
expected resources

evaluates to
a value

resources
witnessed

compatible with
resources expected

11

Soundness Theorem

If e : [a1 a2 . . .] A then !e 7−→∗ v producing resources
[b1 b2 . . .] and [b1 b2 . . .] v [a1 a2 . . .].

well-typed under
expected resources

evaluates to
a value

resources
witnessed

compatible with
resources expected

11

Soundness Theorem

If e : [a1 a2 . . .] A then !e 7−→∗ v producing resources
[b1 b2 . . .] and [b1 b2 . . .] v [a1 a2 . . .].

well-typed under
expected resources

evaluates to
a value

resources
witnessed

compatible with
resources expected

11

Soundness Theorem

If e : [a1 a2 . . .] A then !e 7−→∗ v producing resources
[b1 b2 . . .] and [b1 b2 . . .] v [a1 a2 . . .].

well-typed under
expected resources

evaluates to
a value

resources
witnessed

compatible with
resources expected

11

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If where is strict then !e 7−→∗ v produces resources [b1
b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness by strictness

12

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If where is strict then !e 7−→∗ v produces resources [b1
b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness by strictness

12

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If where is strict then !e 7−→∗ v produces resources [b1
b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness by strictness

12

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If e : [a1 a2 . . .] A where is strict then !e 7−→∗ v
produces resources [b1 b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness by strictness

12

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If e : [a1 a2 . . .] A where is strict then !e 7−→∗ v
produces resources [b1 b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness by strictness

12

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If e : [a1 a2 . . .] A where is strict then !e 7−→∗ v
produces resources [b1 b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness by strictness

12

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If e : [a1 a2 . . .] A where is strict then !e 7−→∗ v
produces resources [b1 b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness by strictness

12

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If e : [a1 a2 . . .] A where is strict then !e 7−→∗ v
produces resources [b1 b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness by strictness

12

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If e : [a1 a2 . . .] A where is strict then !e 7−→∗ v
produces resources [b1 b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness by strictness

12

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If e : [a1 a2 . . .] A where is strict then !e 7−→∗ v
produces resources [b1 b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness

by strictness

12

Soundness Theorem⇒ Capability Safety

A token used as an identifier for an object such that
possession of the token confers access rights for the
object. A capability can be thought of as a ticket. Mod-
ification of a capability […] is not allowable; however,
unlike the case for tickets, reproduction […] is legal.

If e : [a1 a2 . . .] A where is strict then !e 7−→∗ v
produces resources [b1 b2 . . .] 3 .

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [. . .] 6v [. . .]

by soundness by strictness

12

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness

by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where affine then
!e 7−→∗ v produces [b1 b2 . . .] with k where k ≤ n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where linear then
!e 7−→∗ v produces [b1 b2 . . .] with k where k = n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Quantity Safety

If e : [a1 a2 . . .] A with n where linear then
!e 7−→∗ v produces [b1 b2 . . .] with k where k = n.

Proof Sketch

[b1 b2 . . .] v [a1 a2 . . .] [] 6v []

by soundness by affinity

[. . .] 6v [. . .]

by strictness

13

Soundness Theorem⇒ Protocol Safety

If e : [a1 a2 a3 . . .] A where a1 a2 ordered then
!e 7−→∗ v produces [b1 b2 b3 . . .].

lacking all structural rules

Proof Sketch: Analogous from soundness + weakening,
contraction, exchange

14

Soundness Theorem⇒ Protocol Safety

If e : [a1 a2 a3 . . .] A where a1 a2 ordered then
!e 7−→∗ v produces [b1 b2 b3 . . .].

lacking all structural rules

Proof Sketch: Analogous from soundness + weakening,
contraction, exchange

14

Soundness Theorem⇒ Protocol Safety

If e : [a1 a2 a3 . . .] A where a1 a2 ordered then
!e 7−→∗ v produces [a1 a2 b3 . . .].

lacking all structural rules

Proof Sketch: Analogous from soundness + weakening,
contraction, exchange

14

Soundness Theorem⇒ Protocol Safety

If e : [a1 a2 a3 . . .] A where a1 a2 ordered then
!e 7−→∗ v produces [a1 a2 b3 . . .].

lacking all structural rules

Proof Sketch: Analogous from soundness + weakening,
contraction, exchange

14

More in the paper!

Two further structural rules not mentioned here

Constructive Kripke semantics as a programming language
Shifting between substructual modes using quantification,
correspondence to shifts in LNL + adjoint logic
General proof technique capturing logical relations for
open-ended effects
More examples!

15

More in the paper!

Two further structural rules not mentioned here
Constructive Kripke semantics as a programming language

Shifting between substructual modes using quantification,
correspondence to shifts in LNL + adjoint logic
General proof technique capturing logical relations for
open-ended effects
More examples!

15

More in the paper!

Two further structural rules not mentioned here
Constructive Kripke semantics as a programming language
Shifting between substructual modes using quantification,
correspondence to shifts in LNL + adjoint logic

General proof technique capturing logical relations for
open-ended effects
More examples!

15

More in the paper!

Two further structural rules not mentioned here
Constructive Kripke semantics as a programming language
Shifting between substructual modes using quantification,
correspondence to shifts in LNL + adjoint logic
General proof technique capturing logical relations for
open-ended effects

More examples!

15

More in the paper!

Two further structural rules not mentioned here
Constructive Kripke semantics as a programming language
Shifting between substructual modes using quantification,
correspondence to shifts in LNL + adjoint logic
General proof technique capturing logical relations for
open-ended effects
More examples!

15

Takeaway: The effectful view on substructural
reasoning newly unifies a set of old tools

hsgouni@cs.cmu.edu / @hgouni@hci.social

15

https://hci.social/@hgouni

	Reinventing Our Approach [height=1.1`X]cook<2-> Substructural Dependency Tracking
	Examples
	[height=1.1`X]shoppingcart 3-in-1: {Capability, Quantity, Protocol} Safety

