
Constraints vs Structures in Type Systems

Hemant Sai Gouni (& Will Crichton + Jonathan Aldrich)
February 18, 2025

There’s a tug-of-war between constraints and structures at
the heart of lots of type systems

I’d like to convince you that...

1. it exists
2. it’s cognitively interesting

1

There’s a tug-of-war between constraints and structures at
the heart of lots of type systems

I’d like to convince you that...

1. it exists
2. it’s cognitively interesting

1

There’s a tug-of-war between constraints and structures at
the heart of lots of type systems

I’d like to convince you that...

1. it exists

2. it’s cognitively interesting

1

There’s a tug-of-war between constraints and structures at
the heart of lots of type systems

I’d like to convince you that...

1. it exists
2. it’s cognitively interesting

1

Chapter 1: Skirmishes in the Wild

Round 1: Rust

Read 'l1: 'l2 as ‘'l1 outlives 'l2.’

fn first<'a, 'b, 'c, T>(x: &'a T, y: &'b T) ->
&'c T where 'a: 'c {

let z = &*x; // z : &'d T, implicitly
z

}

Read &{x}T as ‘a reference to x lives inside T.’

fn first<T>(x: &T, y: &T) -> &{x} T {
let z = &*x; // z : &{x} T here
z

}

2

Round 1: Rust

Read 'l1: 'l2 as ‘'l1 outlives 'l2.’

fn first<'a, 'b, 'c, T>(x: &'a T, y: &'b T) ->
&'c T where 'a: 'c {

let z = &*x; // z : &'d T, implicitly
z

}

Read &{x}T as ‘a reference to x lives inside T.’

fn first<T>(x: &T, y: &T) -> &{x} T {
let z = &*x; // z : &{x} T here
z

}

2

Round 1: Rust

Read 'l1: 'l2 as ‘'l1 outlives 'l2.’

fn first<'a, 'b, 'c, T>(x: & 'a T, y: &'b T) ->
& 'c T where 'a: 'c {

let z = &*x; // z : &'d T, implicitly
z

}

Read &{x}T as ‘a reference to x lives inside T.’

fn first<T>(x: &T, y: &T) -> & {x} T {
let z = &*x; // z : &{x} T here
z

}

2

Round 1: Rust

Read 'l1: 'l2 as ‘'l1 outlives 'l2.’

fn first<'a, 'b, 'c, T>(x: &'a T, y: &'b T) ->
& T where 'a: 'c {

let z = &*x; // z : & 'd T, implicitly
z

}

Read &{x}T as ‘a reference to x lives inside T.’

fn first<T>(x: &T, y: &T) -> &{x} T {
let z = &*x; // z : &{x} T here
z

}

2

Round 2: Information Flow

Read !l1 < !l2 as ‘information from !l1 flows into !l2.’

let p : !password string = "katya"
let check : 'a string -> 'b bool

with !password < 'b and 'a < 'b =
(* returning a bool with info from password *)
function attempt -> p == attempt

Read [l1 l2] string as ‘this string data depends on
information from l1 and l2.’

let p : [!password] string = "katya"
let check : ['a] string -> ['a !password] bool =

(* returning a bool with info from password *)
function attempt -> p == attempt

3

Round 2: Information Flow

Read !l1 < !l2 as ‘information from !l1 flows into !l2.’

let p : !password string = "katya"
let check : 'a string -> 'b bool

with !password < 'b and 'a < 'b =
(* returning a bool with info from password *)
function attempt -> p == attempt

Read [l1 l2] string as ‘this string data depends on
information from l1 and l2.’

let p : [!password] string = "katya"
let check : ['a] string -> ['a !password] bool =

(* returning a bool with info from password *)
function attempt -> p == attempt

3

Round 2: Information Flow

Read !l1 < !l2 as ‘information from !l1 flows into !l2.’

let p : !password string = "katya"
let check : 'a string -> 'b bool

with !password < 'b and 'a < 'b =
(* returning a bool with info from password *)
function attempt -> p == attempt

Read [l1 l2] string as ‘this string data depends on
information from l1 and l2.’

let p : [!password] string = "katya"
let check : ['a] string -> ['a !password] bool =

(* returning a bool with info from password *)
function attempt -> p == attempt

3

Round 2: Information Flow

let inv : !alice int -> !alice int =
fun x -> -x

let suc : !bob int -> !bob int =
fun x -> x + 1

val inv_suc : 'a int -> 'b int * 'c int
with !bob < 'c
and !alice < 'b
and 'a < 'b, 'c
and 'a < !alice, !bob

let inv_suc x = (inv x, suc x)

4

Round 2: Information Flow

let inv : !alice int -> !alice int =
fun x -> -x

let suc : !bob int -> !bob int =
fun x -> x + 1

val inv_suc : 'a int -> 'b int * 'c int
with !bob < 'c
and !alice < 'b
and 'a < 'b, 'c
and 'a < !alice, !bob

let inv_suc x = (inv x, suc x)

4

Round 2: Information Flow

let inv : [alice] int -> [alice] int =
fun x -> -x

let suc : [bob] int -> [bob] int =
fun x -> x + 1

val inv_suc : [] int -> [alice] int * [bob]
int let inv_suc x = (inv x, suc x)

5

Round 3: Subtyping

Read 'b <: 'a as ‘'b is a subtype of 'a.’

val twice : 'a -> ('a -> 'b) -> 'b where 'b <: 'a
let twice = fun x -> fun f -> f (f x)

Read 'b ∨ 'a as ‘this type is either 'b or 'a.’

val twice : 'a -> ('b ∨ 'a -> 'b) -> 'b
let twice = fun x -> fun f -> f (f x)

6

Round 3: Subtyping

Read 'b <: 'a as ‘'b is a subtype of 'a.’

val choose : bool -> 'a -> 'c
where 'a <: 'c and bool <: 'c

let choose = fun b -> fun x ->
if b then x else false

Read 'b ∨ 'a as ‘this type is either 'b or 'a.’

val choose : bool -> 'a -> 'a ∨ bool
let choose = fun b -> fun x ->

if b then x else false

7

Chapter 2: A Smoldering Debate

Generality vs Specificity

Few constructs that can
capture many problems
adequately

Many constructs that capture
specific problems
extraordinarily well

Pro: Less disparate pieces
to keep in memory, better
compositional reasoning
Con: More difficult to tell
what any particular
program fragment does
at-a-glance.

Pro: Closer to mental
model of programming
problem
Con: More difficult to
identify and transfer
intuition between
problems

8

Generality vs Specificity

Few constructs that can
capture many problems
adequately

Many constructs that capture
specific problems
extraordinarily well

Pro: Less disparate pieces
to keep in memory, better
compositional reasoning
Con: More difficult to tell
what any particular
program fragment does
at-a-glance.

Pro: Closer to mental
model of programming
problem
Con: More difficult to
identify and transfer
intuition between
problems

8

Generality vs Specificity

Few constructs that can
capture many problems
adequately

Many constructs that capture
specific problems
extraordinarily well

Pro: Less disparate pieces
to keep in memory, better
compositional reasoning
Con: More difficult to tell
what any particular
program fragment does
at-a-glance.

Pro: Closer to mental
model of programming
problem
Con: More difficult to
identify and transfer
intuition between
problems

8

Generality vs Specificity

Few constructs that can
capture many problems
adequately

Many constructs that capture
specific problems
extraordinarily well

Pro: Less disparate pieces
to keep in memory, better
compositional reasoning

Con: More difficult to tell
what any particular
program fragment does
at-a-glance.

Pro: Closer to mental
model of programming
problem
Con: More difficult to
identify and transfer
intuition between
problems

8

Generality vs Specificity

Few constructs that can
capture many problems
adequately

Many constructs that capture
specific problems
extraordinarily well

Pro: Less disparate pieces
to keep in memory, better
compositional reasoning
Con: More difficult to tell
what any particular
program fragment does
at-a-glance.

Pro: Closer to mental
model of programming
problem
Con: More difficult to
identify and transfer
intuition between
problems

8

Generality vs Specificity

Few constructs that can
capture many problems
adequately

Many constructs that capture
specific problems
extraordinarily well

Pro: Less disparate pieces
to keep in memory, better
compositional reasoning
Con: More difficult to tell
what any particular
program fragment does
at-a-glance.

Pro: Closer to mental
model of programming
problem

Con: More difficult to
identify and transfer
intuition between
problems

8

Generality vs Specificity

Few constructs that can
capture many problems
adequately

Many constructs that capture
specific problems
extraordinarily well

Pro: Less disparate pieces
to keep in memory, better
compositional reasoning
Con: More difficult to tell
what any particular
program fragment does
at-a-glance.

Pro: Closer to mental
model of programming
problem
Con: More difficult to
identify and transfer
intuition between
problems

8

Generality vs Specificity

'a: 'c

!password < 'b, 'a < 'b

a <: c, b <: c

Inequalities

{x}

['a !password]

a ∨ b

Domain-Dependent

9

Generality vs Specificity

'a: 'c

!password < 'b, 'a < 'b

a <: c, b <: c

Inequalities

{x}

['a !password]

a ∨ b

Domain-Dependent

9

Generality vs Specificity

'a: 'c

!password < 'b, 'a < 'b

a <: c, b <: c

Inequalities

{x}

['a !password]

a ∨ b

Domain-Dependent

9

Generality vs Specificity

'a: 'c

!password < 'b, 'a < 'b

a <: c, b <: c

Inequalities

{x}

['a !password]

a ∨ b

Domain-Dependent

9

Generality vs Specificity

'a: 'c

!password < 'b, 'a < 'b

a <: c, b <: c

Inequalities

{x}

['a !password]

a ∨ b

Domain-Dependent

9

Implicitness vs Explicitness

Structure of problem is hidden
from view, hidden parts
automated away

Structure of problem reified in
programming interface, explicit
intervention required

Pro: Don’t have to think
about type information
where not needed for
problem at hand
Con: Might have to keep
track of implicit invariants
in working memory

Pro: Invariants fully
represented in source,
don’t need to mentally
recompute
Con: Can’t easily forget
unimportant type
structure, more ‘fluff’ to
read and discard

10

Implicitness vs Explicitness

Structure of problem is hidden
from view, hidden parts
automated away

Structure of problem reified in
programming interface, explicit
intervention required

Pro: Don’t have to think
about type information
where not needed for
problem at hand
Con: Might have to keep
track of implicit invariants
in working memory

Pro: Invariants fully
represented in source,
don’t need to mentally
recompute
Con: Can’t easily forget
unimportant type
structure, more ‘fluff’ to
read and discard

10

Implicitness vs Explicitness

Structure of problem is hidden
from view, hidden parts
automated away

Structure of problem reified in
programming interface, explicit
intervention required

Pro: Don’t have to think
about type information
where not needed for
problem at hand
Con: Might have to keep
track of implicit invariants
in working memory

Pro: Invariants fully
represented in source,
don’t need to mentally
recompute
Con: Can’t easily forget
unimportant type
structure, more ‘fluff’ to
read and discard

10

Implicitness vs Explicitness

Structure of problem is hidden
from view, hidden parts
automated away

Structure of problem reified in
programming interface, explicit
intervention required

Pro: Don’t have to think
about type information
where not needed for
problem at hand

Con: Might have to keep
track of implicit invariants
in working memory

Pro: Invariants fully
represented in source,
don’t need to mentally
recompute
Con: Can’t easily forget
unimportant type
structure, more ‘fluff’ to
read and discard

10

Implicitness vs Explicitness

Structure of problem is hidden
from view, hidden parts
automated away

Structure of problem reified in
programming interface, explicit
intervention required

Pro: Don’t have to think
about type information
where not needed for
problem at hand
Con: Might have to keep
track of implicit invariants
in working memory

Pro: Invariants fully
represented in source,
don’t need to mentally
recompute
Con: Can’t easily forget
unimportant type
structure, more ‘fluff’ to
read and discard

10

Implicitness vs Explicitness

Structure of problem is hidden
from view, hidden parts
automated away

Structure of problem reified in
programming interface, explicit
intervention required

Pro: Don’t have to think
about type information
where not needed for
problem at hand
Con: Might have to keep
track of implicit invariants
in working memory

Pro: Invariants fully
represented in source,
don’t need to mentally
recompute

Con: Can’t easily forget
unimportant type
structure, more ‘fluff’ to
read and discard

10

Implicitness vs Explicitness

Structure of problem is hidden
from view, hidden parts
automated away

Structure of problem reified in
programming interface, explicit
intervention required

Pro: Don’t have to think
about type information
where not needed for
problem at hand
Con: Might have to keep
track of implicit invariants
in working memory

Pro: Invariants fully
represented in source,
don’t need to mentally
recompute
Con: Can’t easily forget
unimportant type
structure, more ‘fluff’ to
read and discard

10

Implicitness vs Explicitness

fn id<'a>(x: &'a T) -> &'a T

fn id(x: &T) -> &T

val both : 'a int -> 'b int -> 'c int

where 'a < 'c and 'b < 'c

val both : 'a int -> 'a int -> 'a int

11

Implicitness vs Explicitness

fn id<'a>(x: &'a T) -> &'a T

fn id(x: &T) -> &T

val both : 'a int -> 'b int -> 'c int

where 'a < 'c and 'b < 'c

val both : 'a int -> 'a int -> 'a int

11

Implicitness vs Explicitness

fn id<'a>(x: &'a T) -> &'a T

fn id(x: &T) -> &T

val both : 'a int -> 'b int -> 'c int

where 'a < 'c and 'b < 'c

val both : 'a int -> 'a int -> 'a int

11

Implicitness vs Explicitness

fn id<'a>(x: &'a T) -> &'a T

fn id(x: &T) -> &T

val both : 'a int -> 'b int -> 'c int

where 'a < 'c and 'b < 'c

val both : 'a int -> 'a int -> 'a int

11

Constraints vs Structures Lies at a Crossroads

Goal: Show that structures offer a better pathway to usability
for complex type system features than constraints .

• The constraint approach encodes information about the
program via systems of inequalities (constraints)

constraints = general + implicit

• The structural approach reifies these properties directly in
the syntax via first-class algebraic structures

structures = specific + explicit

Note: Not a rigorous or prescriptive definition— still
descriptive at this point!

12

Constraints vs Structures Lies at a Crossroads

Goal: Show that structures offer a better pathway to usability
for complex type system features than constraints .

• The constraint approach encodes information about the
program via systems of inequalities (constraints)

constraints = general + implicit

• The structural approach reifies these properties directly in
the syntax via first-class algebraic structures

structures = specific + explicit

Note: Not a rigorous or prescriptive definition— still
descriptive at this point!

12

Constraints vs Structures Lies at a Crossroads

Goal: Show that structures offer a better pathway to usability
for complex type system features than constraints .

• The constraint approach encodes information about the
program via systems of inequalities (constraints)

constraints = general + implicit

• The structural approach reifies these properties directly in
the syntax via first-class algebraic structures

structures = specific + explicit

Note: Not a rigorous or prescriptive definition— still
descriptive at this point!

12

Constraints vs Structures Lies at a Crossroads

Goal: Show that structures offer a better pathway to usability
for complex type system features than constraints .

• The constraint approach encodes information about the
program via systems of inequalities (constraints)

constraints = general + implicit

• The structural approach reifies these properties directly in
the syntax via first-class algebraic structures

structures = specific + explicit

Note: Not a rigorous or prescriptive definition— still
descriptive at this point!

12

Constraints vs Structures Lies at a Crossroads

Goal: Show that structures offer a better pathway to usability
for complex type system features than constraints .

• The constraint approach encodes information about the
program via systems of inequalities (constraints)

constraints = general + implicit

• The structural approach reifies these properties directly in
the syntax via first-class algebraic structures

structures = specific + explicit

Note: Not a rigorous or prescriptive definition— still
descriptive at this point!

12

Constraints vs Structures Lies at a Crossroads

Goal: Show that structures offer a better pathway to usability
for complex type system features than constraints .

• The constraint approach encodes information about the
program via systems of inequalities (constraints)

constraints = general + implicit

• The structural approach reifies these properties directly in
the syntax via first-class algebraic structures

structures = specific + explicit

Note: Not a rigorous or prescriptive definition— still
descriptive at this point!

12

Constraints vs Structures Lies at a Crossroads

Goal: Show that structures offer a better pathway to usability
for complex type system features than constraints .

• The constraint approach encodes information about the
program via systems of inequalities (constraints)

constraints = general + implicit

• The structural approach reifies these properties directly in
the syntax via first-class algebraic structures

structures = specific + explicit

Note: Not a rigorous or prescriptive definition— still
descriptive at this point!

12

Chapter 3: Poking and Prodding

Experiments

Hypothesis: The structural approach will be easier to use...

Syntactically
For tasks that extensively
leverage/require the
additional type information.

Semantically
For tasks concerned with
distinguished elements in the
problem domain.

• Structural approach
simplifies the presentation
of types.

• Constraint approach
allows you to separate out
and defer more complex
type information

• a <: c, b <: c
a ∨ b

• 'a -> 'b
['a] -> []

• Making internally
represented information
external (explicit).

13

Experiments

Hypothesis: The structural approach will be easier to use...

Syntactically
For tasks that extensively
leverage/require the
additional type information.

Semantically
For tasks concerned with
distinguished elements in the
problem domain.

• Structural approach
simplifies the presentation
of types.

• Constraint approach
allows you to separate out
and defer more complex
type information

• a <: c, b <: c
a ∨ b

• 'a -> 'b
['a] -> []

• Making internally
represented information
external (explicit).

13

Experiments

Hypothesis: The structural approach will be easier to use...

Syntactically
For tasks that extensively
leverage/require the
additional type information.

Semantically
For tasks concerned with
distinguished elements in the
problem domain.

• Structural approach
simplifies the presentation
of types.

• Constraint approach
allows you to separate out
and defer more complex
type information

• a <: c, b <: c
a ∨ b

• 'a -> 'b
['a] -> []

• Making internally
represented information
external (explicit).

13

Experiments

Hypothesis: The structural approach will be easier to use...

Syntactically
For tasks that extensively
leverage/require the
additional type information.

Semantically
For tasks concerned with
distinguished elements in the
problem domain.

• Structural approach
simplifies the presentation
of types.

• Constraint approach
allows you to separate out
and defer more complex
type information

• a <: c, b <: c
a ∨ b

• 'a -> 'b
['a] -> []

• Making internally
represented information
external (explicit).

13

Experiments

Hypothesis: The structural approach will be easier to use...

Syntactically
For tasks that extensively
leverage/require the
additional type information.

Semantically
For tasks concerned with
distinguished elements in the
problem domain.

• Structural approach
simplifies the presentation
of types.

• Constraint approach
allows you to separate out
and defer more complex
type information

• a <: c, b <: c
a ∨ b

• 'a -> 'b
['a] -> []

• Making internally
represented information
external (explicit).

13

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

Good: isomorphic examples between constraints and
structures within the same problem domain.
Better: isomorphic examples across problem domains—
between aliasing and information flow here.

• Better generalizability .

• Want to come up with design principles for type systems
beyond Rust or information flow.

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

Good: isomorphic examples between constraints and
structures within the same problem domain.
Better: isomorphic examples across problem domains—
between aliasing and information flow here.

• Better generalizability .

• Want to come up with design principles for type systems
beyond Rust or information flow.

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .
Good: isomorphic examples between constraints and
structures within the same problem domain.

Better: isomorphic examples across problem domains—
between aliasing and information flow here.

• Better generalizability .

• Want to come up with design principles for type systems
beyond Rust or information flow.

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .
Good: isomorphic examples between constraints and
structures within the same problem domain.
Better: isomorphic examples across problem domains—
between aliasing and information flow here.

• Better generalizability .

• Want to come up with design principles for type systems
beyond Rust or information flow.

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .
Good: isomorphic examples between constraints and
structures within the same problem domain.
Better: isomorphic examples across problem domains—
between aliasing and information flow here.

• Better generalizability .

• Want to come up with design principles for type systems
beyond Rust or information flow.

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .
Good: isomorphic examples between constraints and
structures within the same problem domain.
Better: isomorphic examples across problem domains—
between aliasing and information flow here.

• Better generalizability .
• Want to come up with design principles for type systems
beyond Rust or information flow.

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

• Better generalizability .

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

• Better generalizability .

Experiments:

Natural Typing

Program Slicing
Attack/Defense Game
Refactor With Me

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

• Better generalizability .

Experiments:

Natural Typing

Program Slicing
Attack/Defense Game
Refactor With Me

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

• Better generalizability .

Experiments:

Natural Typing
Synthesizing Types

Program Slicing
Attack/Defense Game
Refactor With Me

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

• Better generalizability .

Experiments:

Natural Typing
Synthesizing Types
Program Slicing

Attack/Defense Game
Refactor With Me

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

• Better generalizability .

Experiments:

Natural Typing
Synthesizing Types
Program Slicing
Attack/Defense Game

Refactor With Me

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

• Better generalizability .

Experiments:

Natural Typing
Synthesizing Types
Program Slicing
Attack/Defense Game
Refactor With Me

14

Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

• Better generalizability .

Experiments:

Natural Typing
Synthesizing Types

Program Slicing
Attack/Defense Game
Refactor With Me

14

Synthesizing Types

Question
What is the influence of the constraints-structures distinction
on how people induct mental models of type systems and
apply them to examples?

val send : 'a bool -> 'b bool

val send : ['a] bool -> [] bool

let result : ? bool = send (check p)

15

Synthesizing Types

Question
What is the influence of the constraints-structures distinction
on how people induct mental models of type systems and
apply them to examples?

val send : 'a bool -> 'b bool

val send : ['a] bool -> [] bool

let result : ? bool = send (check p)

15

Synthesizing Types

Question
What is the influence of the constraints-structures distinction
on how people induct mental models of type systems and
apply them to examples?

val send : 'a bool -> 'b bool

val send : ['a] bool -> [] bool

let result : ? bool = send (check p)

15

Synthesizing Types

Question
What is the influence of the constraints-structures distinction
on how people induct mental models of type systems and
apply them to examples?

val send : 'a bool -> 'b bool

val send : ['a] bool -> [] bool

let result : ? bool = send (check p)

15

Synthesizing Types

val send : 'a bool -> 'b bool

val send : ['a] bool -> [] bool

let result : ? bool = send (check p)

15

Synthesizing Types

val send : 'a bool -> 'b bool

val send : ['a] bool -> [] bool

let result : ? bool = send (check p)

Question: what’s the type of result?

• ? = 'c
• ? = []

Goal: figure out fuzzy semi-formal mental models of type
systems that model misconceptions.

15

Synthesizing Types

val send : 'a bool -> 'b bool

val send : ['a] bool -> [] bool

let result : ? bool = send (check p)

Question: what’s the type of result?

• ? = 'c

• ? = []

Goal: figure out fuzzy semi-formal mental models of type
systems that model misconceptions.

15

Synthesizing Types

val send : 'a bool -> 'b bool

val send : ['a] bool -> [] bool

let result : ? bool = send (check p)

Question: what’s the type of result?

• ? = 'c

• ? = []

Goal: figure out fuzzy semi-formal mental models of type
systems that model misconceptions.

15

Synthesizing Types

val send : 'a bool -> 'b bool

val send : ['a] bool -> [] bool

let result : ? bool = send (check p)

Question: what’s the type of result?

• ? = 'c
• ? = []

Goal: figure out fuzzy semi-formal mental models of type
systems that model misconceptions.

15

Synthesizing Types

val send : 'a bool -> 'b bool

val send : ['a] bool -> [] bool

let result : ? bool = send (check p)

Question: what’s the type of result?

• ? = 'c
• ? = []

Goal: figure out fuzzy semi-formal mental models of type
systems that model misconceptions.

15

Chapter 4: A Cliffhanger

• The constraints-structures distinction hints
at a rich framework for analyzing the
usability of programming languages.

• We want to derive general, far-sighted
design principles for type systems that
place human interface concerns beside
mathematical considerations at the
foundations of programming languages.

hsgouni@cs.cmu.edu / hgouni@hci.social

15

	Chapter 1: Skirmishes in the Wild 🕊️🌲🌳🦌🌲🐦
	Chapter 2: A Smoldering Debate 🔥
	Chapter 3: Poking and Prodding 🤺🧸
	Chapter 4: A Cliffhanger 🧗

