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There’s a tug-of-war between constraints and structures at
the heart of lots of type systems

I’d like to convince you that...

1. it exists
2. it’s cognitively interesting
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Chapter 1: Skirmishes in the Wild



Round 1: Rust

Read 'l1: 'l2 as ‘'l1 outlives 'l2.’

fn first<'a, 'b, 'c, T>(x: &'a T, y: &'b T) ->
&'c T where 'a: 'c {

let z = &*x; // z : &'d T, implicitly
z

}

Read &{x}T as ‘a reference to x lives inside T.’

fn first<T>(x: &T, y: &T) -> &{x} T {
let z = &*x; // z : &{x} T here
z

}
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Round 2: Information Flow

Read !l1 < !l2 as ‘information from !l1 flows into !l2.’

let p : !password string = "katya"
let check : 'a string -> 'b bool

with !password < 'b and 'a < 'b =
(* returning a bool with info from password *)
function attempt -> p == attempt

Read [ l1 l2 ] string as ‘this string data depends on
information from l1 and l2.’

let p : [ !password ] string = "katya"
let check : [ 'a ] string -> [ 'a !password ] bool =

(* returning a bool with info from password *)
function attempt -> p == attempt
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Round 2: Information Flow

let inv : !alice int -> !alice int =
fun x -> -x

let suc : !bob int -> !bob int =
fun x -> x + 1

val inv_suc : 'a int -> 'b int * 'c int
with !bob < 'c
and !alice < 'b
and 'a < 'b, 'c
and 'a < !alice, !bob

let inv_suc x = (inv x, suc x)
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Round 2: Information Flow

let inv : [ alice ] int -> [ alice ] int =
fun x -> -x

let suc : [ bob ] int -> [ bob ] int =
fun x -> x + 1

val inv_suc : [ ] int -> [ alice ] int * [ bob ]
int let inv_suc x = (inv x, suc x)
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Round 3: Subtyping

Read 'b <: 'a as ‘'b is a subtype of 'a.’

val twice : 'a -> ('a -> 'b) -> 'b where 'b <: 'a
let twice = fun x -> fun f -> f (f x)

Read 'b ∨ 'a as ‘this type is either 'b or 'a.’

val twice : 'a -> ( 'b ∨ 'a -> 'b) -> 'b
let twice = fun x -> fun f -> f (f x)
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Round 3: Subtyping

Read 'b <: 'a as ‘'b is a subtype of 'a.’

val choose : bool -> 'a -> 'c
where 'a <: 'c and bool <: 'c

let choose = fun b -> fun x ->
if b then x else false

Read 'b ∨ 'a as ‘this type is either 'b or 'a.’

val choose : bool -> 'a -> 'a ∨ bool
let choose = fun b -> fun x ->

if b then x else false
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Chapter 2: A Smoldering Debate



Generality vs Specificity

Few constructs that can
capture many problems
adequately

Many constructs that capture
specific problems
extraordinarily well

Pro: Less disparate pieces
to keep in memory, better
compositional reasoning
Con: More difficult to tell
what any particular
program fragment does
at-a-glance.

Pro: Closer to mental
model of programming
problem
Con: More difficult to
identify and transfer
intuition between
problems
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Generality vs Specificity

'a: 'c

!password < 'b, 'a < 'b

a <: c, b <: c

Inequalities

{x}

[ 'a !password ]

a ∨ b

Domain-Dependent
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Implicitness vs Explicitness

Structure of problem is hidden
from view, hidden parts
automated away

Structure of problem reified in
programming interface, explicit
intervention required

Pro: Don’t have to think
about type information
where not needed for
problem at hand
Con: Might have to keep
track of implicit invariants
in working memory

Pro: Invariants fully
represented in source,
don’t need to mentally
recompute
Con: Can’t easily forget
unimportant type
structure, more ‘fluff’ to
read and discard
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Implicitness vs Explicitness

fn id<'a>(x: &'a T) -> &'a T

fn id(x: &T) -> &T

val both : 'a int -> 'b int -> 'c int

where 'a < 'c and 'b < 'c

val both : 'a int -> 'a int -> 'a int
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Constraints vs Structures Lies at a Crossroads

Goal: Show that structures offer a better pathway to usability
for complex type system features than constraints .

• The constraint approach encodes information about the
program via systems of inequalities (constraints)

constraints = general + implicit

• The structural approach reifies these properties directly in
the syntax via first-class algebraic structures

structures = specific + explicit

Note: Not a rigorous or prescriptive definition— still
descriptive at this point!
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Chapter 3: Poking and Prodding



Experiments

Hypothesis: The structural approach will be easier to use...

Syntactically
For tasks that extensively
leverage/require the
additional type information.

Semantically
For tasks concerned with
distinguished elements in the
problem domain.

• Structural approach
simplifies the presentation
of types.

• Constraint approach
allows you to separate out
and defer more complex
type information

• a <: c, b <: c
a ∨ b

• 'a -> 'b
[ 'a ] -> [ ]

• Making internally
represented information
external (explicit).
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Experiments

Focusing on Rust and information flow . Why?

• Easier to come up with isomorphic examples .

Good: isomorphic examples between constraints and
structures within the same problem domain.
Better: isomorphic examples across problem domains—
between aliasing and information flow here.

• Better generalizability .

• Want to come up with design principles for type systems
beyond Rust or information flow.
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Synthesizing Types

Question
What is the influence of the constraints-structures distinction
on how people induct mental models of type systems and
apply them to examples?

val send : 'a bool -> 'b bool

val send : [ 'a ] bool -> [ ] bool

let result : ? bool = send (check p)
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Chapter 4: A Cliffhanger



• The constraints-structures distinction hints
at a rich framework for analyzing the
usability of programming languages.

• We want to derive general, far-sighted
design principles for type systems that
place human interface concerns beside
mathematical considerations at the
foundations of programming languages.

hsgouni@cs.cmu.edu / hgouni@hci.social
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