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Why’s this simpler?

auth : a string -> (b int -> c bool) -> d bool
where tok v b

pwd t a t c v d

expressions dependencies types 9



Why’s this simpler?

tok v b

pwd t a t c v d

expressions dependencies types 9



Why’s this simpler?

tok v b

pwd t a t c v d

b

tok

v

expressions dependencies types 9



Why’s this simpler?

tok v b

pwd t a t c v d

b

tok

v

[b]

[tok]

v

expressions dependencies types 9



Why’s this simpler?

b

tok

v

[b]

[tok]

v [tok]

expressions dependencies types 9



Why’s this simpler?

tok v b

pwd t a t c v d

expressions dependencies types 9



Why’s this simpler?

tok v b

pwd t a t c v d

d

t

pwd a c

v

expressions dependencies types 9



Why’s this simpler?

tok v b

pwd t a t c v d

d

t

pwd a c

v

[d]

t

[pwd] [a] [c]

v

expressions dependencies types 9



Why’s this simpler?

d

t

pwd a c

v

[d]

t

[pwd] [a] [c]

v
[d]

[pwd a c]

v

expressions dependencies types 9



Why’s this simpler?

[d]

t

[pwd] [a] [c]

v
[d]

[pwd a c]

v [pwd a c]

expressions dependencies types 9



Why’s this simpler?

Lattices

a string -> (b int -> c bool) -> d bool
where tok v b

pwd t a t c v d

Polymorphism

[a] string -> ([tok] int -> [c] bool) -> [pwd a c] bool
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Why’s this simpler?

Lattices
A fragment of a more complicated

Flow Caml type:

a string where b t c v a
f v b
d t e v c

Polymorphism
[ d e f ] string
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v
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Is [ x y ] the same as [ y x ]?

Is [ x y ] the same as [ x y z ]?

Is [ x x ] the same as [ x ]?
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• What does it mean to get rid of these rules?
• Weakening
• Contraction
• Exchange
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I can’t have things for free anymore... except capabilities!

Capability reasoning for free from dropping weakening!

module type Authorize : sig
label
let auth : [ ] password ->

[ ] unit + [ ] unit
end

let sensitive_op = [ ] arg_type -> ...
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I can’t squish stuff together anymore...

...which lets us prevent resource exhaustion issues!

module type Bank : sig
type
label
val empty :
val get_coin : [ a ] -> [ a ]
val transact : password ->

(unit -> [ ] ) -> unit
end

transact (Password "katya")
(fun _ -> (get_coin (get_coin empty)))

exchange weakening contraction 15
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Turbocharging Non-Interference
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[ ] [ a ]

Definition of Non-Interference
You must not be able to turn something you cannot observe
into something you can observe.

Central Idea
The structural rules define your powers of observation.

• Can’t get a for free because that would be a violation!
• Can’t lie about the number of we’ve got in our bag!
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Granule: General framework for graded type theories. Our
system could be embedded in theirs by extending their
compiler with the appropriate SMT encoding.

• Substructural non-interference offers strong guarantees
for this kind of reasoning anywhere, whether in a
standalone implementation or for embeddings into a
more general setting.
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Session Types, Choreographies, Typestate: Focus on the future
rather than the past: they only tell you what can be done
computationally, not what form a computation already has.

• Occasionally adopt slightly more alien computational
models like process calculi.
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• Information flow can be captured using
familiar machinery for parametric
polymorphism.

• Building on this, substructural information
flow provides essential security and
behavioral reasoning tools.

• These tools have been proved to be sound
via substructural non-interference, a
powerful property that generalizes typical
non-interference.

hsgouni@cs.cmu.edu / @hgouni@hci.social
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