Substructural Information Flow via
Polymorphism

Hemant Sai Gouni
10/21/2024

Explaining Information Flow
Information Flow via Polymorphism

Substructural Information Flow

An Opinionated Guide to Information Flow s

An Opinionated Guide to Information Flow s

[l source [P source & destination [destination

Information Flow is About Separation

Public

[l source [l source & destination [l destination

Information Flow is About Separation

ML Module

Public

[l source [l source & destination [l destination

Information Flow is About
Q

Public

[l source [l source & destination [l destination

Information Flow, Classically

password

Il source [l source & destination [l destination

Information Flow, Classically

password

N
N
’ N
s N
s N
A 2N
N AN
’ N / N
’ S ¢ N
s 7 N
A hd N
A 2N 2
A 4 S [N
N , N ’
’ N L, N P N
7 N7 N N
> X
N PN AN ~
/N N s N
z N 4 N , S s N
v N Z S s N
s N N, \
< ¢ e S
< N . 7
N s \ s
N s N s
N ’ 4 S N s
N NP Sy N
v X % v
N PN VAN s
N % N . N s
N , N , N ’
N N ’
2 N2 S
X X >
N AN ’
N . N s
N s N ’
N N
Ny NS
< 7
N ’
N s
N v
N
v

Il source [l source & destination [l destination

Information Flow, Classically

password

N
N
’ N
¢ S f—
L AN + + —
N 7
N AN
’ N / N
’ S ¢ N
s 7 N
A hd A
N 2N 27N
s N 7 S , N
’ ’ N N
’ > Z N ’ N
’ S2 S 7 N
N 2N 23 ”~
N 4 S N
s \ 2 > ’ S ’ N
v N Z ~ 2 S s N
s N N, \
¢ 2 8 S
< > < >
N s \ s
N s N ’
7 N
AN PN S 2 N
v N \,\’ v
2
N PN VAN e
N 4 S i S ’
N c N S ’
2 S
< W ¥
”~
N AN ’
N . N s
N s N ’
N N
Ny NS
< 7
N ’
N s
N v
N
v

Il source [l source & destination [l destination

Information Flow, Classically

password

N
N
’ N
¢ S —_—
L AN + + =
N 7
N AN
’ N / N
s S 4 N
s 7 N
A hd A
7N PN 2 D —
// N s’ N ’ \\ + + —
’ > “ N ’ N
’ S2 S 7 N
N 2N 23 ”~
N 4 S N
s \ 2 > ’ S ’ N
v N Z ~ 2 S s N
s N N, \
¢ 2 8 S
< > < >
N s \ s
N s N ’
N ’ 4 S N s
N7 \\ Z N\ ,/ Nz
v N K v
N PN VAN e
N 4 S i S ’
N 4 N N s
2 S
< W ¥
”~
N AN ’
N . N s
N s N ’
N N
Ny NS
< 7
N ’
N s
N v
N
v

Il source [l source & destination [l destination

Information Flow, Classically

password

N
’ N
s N
’ N —_
S
N 7
N AN
’ N / N
s S 4 N
s SZ N
A hd A
/N N
RN , N 7 -
z N , N ’ S —_
’ N , N P N
// S 2 S 7 \\
> X
N ”~
/N 7N 7N N
s S 4 N
s N S , ’ N

L /’>\M'<\\ e W [eIRll can flow to
% Y 7 password

N 4 N , S ’
S, 2 N S 2
N N2 N
”~
N AN ’

N . N s
N s N ’

N N
Ny NS
< 7
N ’

N s
N v
N
v

Il source [l source & destination [l destination

Information Flow, Classically

password

s N
’ N —_
S
< 7
SO0 AN
’ N / N
s S 4 N
s SZ N
v
A PA A
RN , N 2B -
z N , N ’ S —_
v N % N 4 N
ad S2 S 7 N
> X
N PN AN ”~
/N N
s S 4 N
s N S , ’ N

S /imx\ 7 LI can flow to

¥ e > password

SEES N cannot flow to
stdout

Il source [l source & destination [l destination

Information Flow, Classically

password

N
N
’ N
s N
s N
A 2N
N AN
, N ’ S —
. N ’ N |_| -_—
s SZ N
A hd N
N 2N N
s > 7 S ’ N
v > 4 S 4 N
N . N s

.
7/ Yy X N
// \\\ AN AN /// \\\ U m m
N 4 N s N z
N 7 4 N N\ Ve
v X < e stdout = password

A N Va 7/
N\ 14 N 7 N 4
NS e N AN o

(\ N e
AN ,/ \\ 7’
AN password g4 std
Ny N7
A 7/
N y
A 7/
AY 7/
Ny’
v

Il source [l source & destination [l destination

Quick demonstration! /

Information Flow via .~ Polymorphism

Information Flow via .+ Polymorphism

B expressions [dependencies [types

Information Flow is Implemented by Tracking Dependencies

e : [ab] int

Il expressions [l dependencies [l types

Information Flow is Implemented by Tracking Dependencies

e : [ab] int

expression

Il expressions [l dependencies [l types

Information Flow is Implemented by Tracking Dependencies

e : [ab] int

expression

dependencies

Il expressions [l dependencies [l types

Information Flow is Implemented by Tracking Dependencies

e : [ab] int

/ \

expression type

dependencies

Il expressions [l dependencies [l types

Information Flow is Implemented by Tracking Dependencies

e: [abl] int

expression type

dependencies

- Reade : [a b] int as”expression e is dependent
on data from sources a, b with type int”

Il expressions [l dependencies [l types

Information Flow is Implemented by Tracking Dependencies

e: [abl] int

expression type

dependencies

- Reade : [a b] int as”expression e is dependent
on data from sources a, b with type int”
- [a b] tells you how something was computed

Il expressions [l dependencies [l types

Information Flow is Implemented by Tracking Dependencies

e: [abl] int

expression type

dependencies

- Reade : [a b] int as”expression e is dependent
on data from sources a, b with type int”
- [a b] tells you how something was computed
- int tells you what that thing is

Il expressions [l dependencies [l types

Information Flow is Implemented by Tracking Dependencies

e: [abl] int

expression type

dependencies

- Reade : [a b] int as”expression e is dependent
on data from sources a, b with type int”
- [a b] tells you how something was computed
- int tells you what that thing is
- Track information dependencies in types

Il expressions [l dependencies [l types ‘

Information Flow is Implemented by Tracking Dependencies

e: [abl] int

expression type

dependencies

- Reade : [a b] int as”expression e is dependent
on data from sources a, b with type int”
- [a b] tells you how something was computed
- int tells you what that thing is
- Track information dependencies in types
- Flows induce dependencies

Il expressions [l dependencies [l types ‘

Information Flow is Implemented by Tracking Dependencies

e: [abl] int

expression type
dependencies

let fst : [a] int -> [b] int -> [a] int
let fst x y = X

Il expressions [l dependencies [l types

Information Flow is Implemented by Tracking Dependencies

e: [abl] int

expression type
dependencies

let fst : [a] int -> [b] int -> [a] int
let fst x y = X

let both : [a] int -=> [b] int -> [a b] int
let both x y = x + vy

Il expressions [l dependencies [l types

Information Flow is Implemented by Tracking Dependencies

e: [abl] int

expression type
dependencies

let fst : [a] int -> [b] int -> [a] int
let fst x y = X

let both : [a] int -=> [b] int -> [a b] int
let both x y = x + vy

let br : [a] bool -=>[b] int -> [a b] int
let br cond x = if cond then x else 0

‘ Il expressions [l dependencies [l types ‘

Why's this simpler?

auth : a string -> (b int -> ¢ bool) -> d bool
where tok C b
pwd U allcCd

Il expressions [l dependencies [l types

Why's this simpler?

pwdUaulcCd

Il expressions [l dependencies [l types

Why's this simpler?

b
pwd UalcCd
tok

Il expressions [l dependencies [l types

Why's this simpler?

b [b]
pwd UalcCd
tok [tok]

Il expressions [l dependencies [l types

Why's this simpler?

b [b]
[tok]

tok [tok]

Il expressions [l dependencies [l types

Why's this simpler?

tokC b

Il expressions [l dependencies [l types

Why's this simpler?

tokC b

pwd a C

Il expressions [l dependencies [l types

Why's this simpler?

d [d]
tokC b
pwd a c [pwd] [a] [c]

Il expressions [l dependencies [l types

Why's this simpler?

d [d]
[d]
\ [pwd a c]
pwd a ¢ [pwd] [a] [c]

Il expressions [l dependencies [l types

Why's this simpler?

[d]
[d]

'E' [pwd a c]

\ [pwd a c]
[pwd] [a] [c]

Il expressions [l dependencies [l types

Why's this simpler?

Lattices
a string -> (b int -> ¢ bool) -> d bool

where tok T b
pwd U a U c C d

Polymorphism

[a] string -> ([tok] int -> [c] bool) -> [pwd a c] bool

Il expressions [l dependencies [l types 10

Why's this simpler?

Lattices .
A fragment of a more complicated
Flow Caml type:

a string where b L c C a R
fCob
L

Polymorphism

[def] string d 2

Il expressions [l dependencies [l types ‘ L

Substructural Information Flow

Substructural Information Flow

[l exchange | weakening [contraction

12

1w exchange m weakening m contraction

- What does it mean to get rid of these rules?
- Weakening
- Contraction

- Exchange

Il exchange [l weakening [l contraction

13

- What does it mean to get rid of these rules?
- Weakening

- Contraction
- Exchange

[l exchange [l weakening [l contraction

13

- What does it mean to get rid of these rules?
- Weakening
- With
let id : [&] int -> [& &] int
let id x = X

- Contraction
- Exchange

[l exchange [l weakening [l contraction

13

- What does it mean to get rid of these rules?
- Weakening
- With
let id : [&] int -> [& &] int
let id x = X
- Without ©
let id : [&] int -> [&] int
let id x = X

- Contraction
- Exchange

[l exchange [l weakening [l contraction

13

- What does it mean to get rid of these rules?
- Weakening
- With
let id : [@] int -> [& &] int
let id x = x
- Without ©
let id : [@&] int -> [&] int
let id x X
- Error 3%
let br : [@<] bool ->
[o] int -> [& o] int
let br b x = if b then x else 0
- No type for this term..?
- Contraction

- Exchange

: - 1
B exchange [l weakening [l contraction .

- What does it mean to get rid of these rules?
- Weakening
- Contraction

- Exchange

Il exchange [l weakening [l contraction

13

- What does it mean to get rid of these rules?

- Weakening
- Contraction

- Exchange

Il exchange [l weakening [l contraction

13

- What does it mean to get rid of these rules?
- Weakening
- Contraction
- with (4
let x2 : [&] int -> [&] int
let x2 x = X + X

- Exchange

Il exchange [l weakening [l contraction

13

- What does it mean to get rid of these rules?
- Weakening
- Contraction
- With
let x2 : [&] int -> [&] int
let x2 x = X + X

- Without ©

let x2 : [@&] int -> [@& &] int
let x2 x = x + X

- Exchange

Il exchange [l weakening [l contraction

13

- What does it mean to get rid of these rules?
- Weakening
- Contraction

- Exchange

Il exchange [l weakening [l contraction

13

- What does it mean to get rid of these rules?
- Weakening

- Contraction

- Exchange

[l exchange [l weakening [l contraction

13

- What does it mean to get rid of these rules?
- Weakening
- Contraction
- Exchange
- With
let xy : [@& 1 ->[o] ->[@& o]
let xy x y =y + X

[l exchange [l weakening [l contraction

- What does it mean to get rid of these rules?
- Weakening
- Contraction
- Exchange
- With
let xy : [@& 1 ->[o 1 ->[@& o]
let xy x y =y + X

- Without ©
let xy : [@&] ->[o] ->[o &]
let xy x y =y + X

[l exchange [l weakening [l contraction

13

| can’t have things for free anymore... except capabilities!

Capability reasoning for free from dropping weakening

module type Authorize : sig
label <*
let auth : [] password ->
[<* 1 unit + [] unit

let sensitive_op [x*] arg_type -> ...

Il exchange [l weakening [l contraction e

| can’t squish stuff together anymore...

..which lets us prevent resource exhaustion issues!

module type Bank : sig

type @
label @
val empty : &
val get coin : [a] & >[a &] &
val transact : password ->
(unit > [@ @ & 1 &) -> unit

transact (Password "katya")
(fun _ -> (get_coin (get_coin empty)))

: - 1
‘ B exchange [l weakening [l contraction ‘ 2

Substructural Non-Interference ft‘

Turbocharging Non-Interference ¢ o

[& o]

[xy]@[]
[<] [a]

=

Definition of Non-Interference
You must not be able to turn something you cannot observe
into something you can observe.

[l exchange [l weakening [l contraction

Turbocharging Non-Interference ¢ o

[& o]

[xy]@[]
[<] [a]

=

Definition of Non-Interference
You must not be able to turn something you cannot observe
into something you can observe.

Central Idea
The structural rules define your powers of observation.

[l exchange [l weakening [l contraction

Turbocharging Non-Interference ¢ o

[& o]

[xy]@[]
[<] [a]

=

Definition of Non-Interference
You must not be able to turn something you cannot observe
into something you can observe.

Central Idea
The structural rules define your powers of observation.

- Can't get a X* for free because that would be a violation!

[l exchange [l weakening [l contraction

| can’t have things for free anymore... except capabilities!

Capability reasoning for free from dropping weakening!

module type Authorize : sig
label <*
let auth : [] password ->
[<*] unit + [] unit

let sensitive_op = [X*] arg_type -> ...

Il exchange [l weakening [l contraction

Turbocharging Non-Interference ¢ o

[@ o]
[xy]@ []
[<* 1] = [al
Definition of Non-Interference

You must not be able to turn something you cannot observe
into something you can observe.

Central Idea
The structural rules define your powers of observation.

- Can't get a X* for free because that would be a violation!

- Can't lie about the number of & we've got in our bag!

[l exchange [l weakening [l contraction ‘

| can’t squish stuff together anymore...

..which lets us prevent resource exhaustion issues!

module type Bank : sig

type @
label @
val empty : &
val get coin : [a] & >[a &] &
val transact : password ->
(unit > [@ @ & 1 &) -> unit

transact (Password "katya")
(fun _ -> (get_coin (get_coin empty)))

: - 2
‘ B exchange [l weakening [l contraction ‘ v

Other Cool Work <

Granule: General framework for graded type theories. Our
system could be embedded in theirs by extending their
compiler with the appropriate SMT encoding.

- Substructural non-interference offers strong guarantees
for this kind of reasoning anywhere, whether in a
standalone implementation or for embeddings into a
more general setting.

21

Session Types, Choreographies, Typestate: Focus on the future
rather than the past: they only tell you what can be done
computationally, not what form a computation already has.

- Occasionally adopt slightly more alien computational
models like process calculi.

21

Information flow can be captured using
familiar machinery for parametric
polymorphism.

Building on this, substructural information
flow provides essential security and
behavioral reasoning tools.

These tools have been proved to be sound
via substructural non-interference, a
powerful property that generalizes typical
non-interference.

hsgouni@cs.cmu.edu / @hgouni@hci.social

	An Opinionated Guide to Information Flow 🧩
	Information Flow via ✨ Polymorphism ✨
	✨ Substructural ✨ Information Flow
	Substructural Non-Interference 🦖70🔥
	Other Cool Work 🧭

