
Substructural Information Flow via
Polymorphism

Hemant Sai Gouni
10/21/2024

Explaining Information Flow

Information Flow via Polymorphism

Substructural Information Flow

1

An Opinionated Guide to Information Flow

An Opinionated Guide to Information Flow

source source & destination destination

2

Information Flow is About Separation

Fo
rk/

Join
Parallelism (Until Join)

Task 2

Task 1

Seq

Ty
pe-

Level Hiding
ML Module

Client

Secret

Public

source source & destination destination 3

Information Flow is About Separation

Fo
rk/

Join
Parallelism (Until Join)

Task 2

Task 1

Seq

Ty
pe-

Level Hiding
ML Module

Client

Secret

Public

source source & destination destination 3

Information Flow is About Separation

Fo
rk/

Join
Parallelism (Until Join)

Task 2

Task 1

Seq
Ty

pe-
Level Hiding

ML Module

Client

Secret

Public

source source & destination destination 3

Information Flow, Classically

stdout

misc data

password

"a" ++ "b" = "ab"

"a" ++ "pw" = "apw"

stdout can flow to
password

password cannot flow to
stdout

source source & destination destination 4

Information Flow, Classically

stdout

misc data

password

"a" ++ "b" = "ab"

"a" ++ "pw" = "apw"

stdout can flow to
password

password cannot flow to
stdout

source source & destination destination 4

Information Flow, Classically

stdout

misc data

password

"a" ++ "b" = "ab"

"a" ++ "pw" = "apw"

stdout can flow to
password

password cannot flow to
stdout

source source & destination destination 4

Information Flow, Classically

stdout

misc data

password

"a" ++ "b" = "ab"

"a" ++ "pw" = "apw"

stdout can flow to
password

password cannot flow to
stdout

source source & destination destination 4

Information Flow, Classically

stdout

misc data

password

"a" ++ "b" = "ab"

"a" ++ "pw" = "apw"

stdout can flow to
password

password cannot flow to
stdout

source source & destination destination 4

Information Flow, Classically

stdout

misc data

password

"a" ++ "b" = "ab"

"a" ++ "pw" = "apw"

stdout can flow to
password

password cannot flow to
stdout

source source & destination destination 4

Information Flow, Classically

stdout

misc data

password

"a" t "b" = "ab"

"a" t "pw" = "apw"

stdout v password

password 6v stdout

source source & destination destination 5

Quick demonstration!

5

Information Flow via Polymorphism

Information Flow via Polymorphism

expressions dependencies types

6

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

expressions dependencies types 7

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

expressions dependencies types 7

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

expressions dependencies types 7

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

expressions dependencies types 7

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

• Read e : [a b] int as ”expression e is dependent
on data from sources a, b with type int.”

• [a b] tells you how something was computed
• int tells you what that thing is

• Track information dependencies in types

• Flows induce dependencies

expressions dependencies types 8

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

• Read e : [a b] int as ”expression e is dependent
on data from sources a, b with type int.”

• [a b] tells you how something was computed

• int tells you what that thing is
• Track information dependencies in types

• Flows induce dependencies

expressions dependencies types 8

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

• Read e : [a b] int as ”expression e is dependent
on data from sources a, b with type int.”

• [a b] tells you how something was computed
• int tells you what that thing is

• Track information dependencies in types

• Flows induce dependencies

expressions dependencies types 8

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

• Read e : [a b] int as ”expression e is dependent
on data from sources a, b with type int.”

• [a b] tells you how something was computed
• int tells you what that thing is

• Track information dependencies in types

• Flows induce dependencies

expressions dependencies types 8

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

• Read e : [a b] int as ”expression e is dependent
on data from sources a, b with type int.”

• [a b] tells you how something was computed
• int tells you what that thing is

• Track information dependencies in types
• Flows induce dependencies

expressions dependencies types 8

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

let fst : [a] int -> [b] int -> [a] int
let fst x y = x

let both : [a] int -> [b] int -> [a b] int
let both x y = x + y

let br : [a] bool -> [b] int -> [a b] int
let br cond x = if cond then x else 0

expressions dependencies types 8

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

let fst : [a] int -> [b] int -> [a] int
let fst x y = x

let both : [a] int -> [b] int -> [a b] int
let both x y = x + y

let br : [a] bool -> [b] int -> [a b] int
let br cond x = if cond then x else 0

expressions dependencies types 8

Information Flow is Implemented by Tracking Dependencies

e : [a b] int

expression

dependencies

type

let fst : [a] int -> [b] int -> [a] int
let fst x y = x

let both : [a] int -> [b] int -> [a b] int
let both x y = x + y

let br : [a] bool -> [b] int -> [a b] int
let br cond x = if cond then x else 0

expressions dependencies types 8

Why’s this simpler?

auth : a string -> (b int -> c bool) -> d bool
where tok v b

pwd t a t c v d

expressions dependencies types 9

Why’s this simpler?

tok v b

pwd t a t c v d

expressions dependencies types 9

Why’s this simpler?

tok v b

pwd t a t c v d

b

tok

v

expressions dependencies types 9

Why’s this simpler?

tok v b

pwd t a t c v d

b

tok

v

[b]

[tok]

v

expressions dependencies types 9

Why’s this simpler?

b

tok

v

[b]

[tok]

v [tok]

expressions dependencies types 9

Why’s this simpler?

tok v b

pwd t a t c v d

expressions dependencies types 9

Why’s this simpler?

tok v b

pwd t a t c v d

d

t

pwd a c

v

expressions dependencies types 9

Why’s this simpler?

tok v b

pwd t a t c v d

d

t

pwd a c

v

[d]

t

[pwd] [a] [c]

v

expressions dependencies types 9

Why’s this simpler?

d

t

pwd a c

v

[d]

t

[pwd] [a] [c]

v
[d]

[pwd a c]

v

expressions dependencies types 9

Why’s this simpler?

[d]

t

[pwd] [a] [c]

v
[d]

[pwd a c]

v [pwd a c]

expressions dependencies types 9

Why’s this simpler?

Lattices

a string -> (b int -> c bool) -> d bool
where tok v b

pwd t a t c v d

Polymorphism

[a] string -> ([tok] int -> [c] bool) -> [pwd a c] bool

expressions dependencies types 10

Why’s this simpler?

Lattices
A fragment of a more complicated

Flow Caml type:

a string where b t c v a
f v b
d t e v c

Polymorphism
[d e f] string

a

t

b

f

v

c

t

d e

v

v

expressions dependencies types 11

Substructural Information Flow

Substructural Information Flow

exchange weakening contraction

12

Is [x y] the same as [y x]?

Is [x y] the same as [x y z]?

Is [x x] the same as [x]?

exchange weakening contraction 12

• What does it mean to get rid of these rules?
• Weakening
• Contraction
• Exchange

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening

• With
let id : [] int -> [] int
let id x = x

• Without
let id : [] int -> [] int
let id x = x

• Error
let br : [] bool ->

[] int -> [] int
let br b x = if b then x else 0

• No type for this term...?

• Contraction
• Exchange

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening

• With
let id : [] int -> [] int
let id x = x

• Without
let id : [] int -> [] int
let id x = x

• Error
let br : [] bool ->

[] int -> [] int
let br b x = if b then x else 0

• No type for this term...?

• Contraction
• Exchange

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening

• With
let id : [] int -> [] int
let id x = x

• Without
let id : [] int -> [] int
let id x = x

• Error
let br : [] bool ->

[] int -> [] int
let br b x = if b then x else 0

• No type for this term...?

• Contraction
• Exchange

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening

• With
let id : [] int -> [] int
let id x = x

• Without
let id : [] int -> [] int
let id x = x

• Error
let br : [] bool ->

[] int -> [] int
let br b x = if b then x else 0

• No type for this term...?

• Contraction
• Exchange

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening
• Contraction
• Exchange

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening
• Contraction

• With
let x2 : [] int -> [] int
let x2 x = x + x

• Without
let x2 : [] int -> [] int
let x2 x = x + x

• Exchange

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening
• Contraction

• With
let x2 : [] int -> [] int
let x2 x = x + x

• Without
let x2 : [] int -> [] int
let x2 x = x + x

• Exchange

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening
• Contraction

• With
let x2 : [] int -> [] int
let x2 x = x + x

• Without
let x2 : [] int -> [] int
let x2 x = x + x

• Exchange

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening
• Contraction
• Exchange

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening
• Contraction
• Exchange

• With
let xy : [] -> [] -> []
let xy x y = y + x

• Without
let xy : [] -> [] -> []
let xy x y = y + x

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening
• Contraction
• Exchange

• With
let xy : [] -> [] -> []
let xy x y = y + x

• Without
let xy : [] -> [] -> []
let xy x y = y + x

exchange weakening contraction 13

• What does it mean to get rid of these rules?
• Weakening
• Contraction
• Exchange

• With
let xy : [] -> [] -> []
let xy x y = y + x

• Without
let xy : [] -> [] -> []
let xy x y = y + x

exchange weakening contraction 13

I can’t have things for free anymore... except capabilities!

Capability reasoning for free from dropping weakening!

module type Authorize : sig
label
let auth : [] password ->

[] unit + [] unit
end

let sensitive_op = [] arg_type -> ...

exchange weakening contraction 14

I can’t squish stuff together anymore...

...which lets us prevent resource exhaustion issues!

module type Bank : sig
type
label
val empty :
val get_coin : [a] -> [a]
val transact : password ->

(unit -> []) -> unit
end

transact (Password "katya")
(fun _ -> (get_coin (get_coin empty)))

exchange weakening contraction 15

Substructural Non-Interference

Turbocharging Non-Interference

[]

[x y] []

[] [a]

Definition of Non-Interference
You must not be able to turn something you cannot observe
into something you can observe.

Central Idea
The structural rules define your powers of observation.

• Can’t get a for free because that would be a violation!
• Can’t lie about the number of we’ve got in our bag!

exchange weakening contraction 16

Turbocharging Non-Interference

[]

[x y] []

[] [a]

Definition of Non-Interference
You must not be able to turn something you cannot observe
into something you can observe.

Central Idea
The structural rules define your powers of observation.

• Can’t get a for free because that would be a violation!
• Can’t lie about the number of we’ve got in our bag!

exchange weakening contraction 17

Turbocharging Non-Interference

[]

[x y] []

[] [a]

Definition of Non-Interference
You must not be able to turn something you cannot observe
into something you can observe.

Central Idea
The structural rules define your powers of observation.

• Can’t get a for free because that would be a violation!

• Can’t lie about the number of we’ve got in our bag!

exchange weakening contraction 17

I can’t have things for free anymore... except capabilities!

Capability reasoning for free from dropping weakening!

module type Authorize : sig
label
let auth : [] password ->

[] unit + [] unit
end

let sensitive_op = [] arg_type -> ...

exchange weakening contraction 18

Turbocharging Non-Interference

[]

[x y] []

[] [a]

Definition of Non-Interference
You must not be able to turn something you cannot observe
into something you can observe.

Central Idea
The structural rules define your powers of observation.

• Can’t get a for free because that would be a violation!
• Can’t lie about the number of we’ve got in our bag!

exchange weakening contraction 19

I can’t squish stuff together anymore...

...which lets us prevent resource exhaustion issues!

module type Bank : sig
type
label
val empty :
val get_coin : [a] -> [a]
val transact : password ->

(unit -> []) -> unit
end

transact (Password "katya")
(fun _ -> (get_coin (get_coin empty)))

exchange weakening contraction 20

Other Cool Work

Granule: General framework for graded type theories. Our
system could be embedded in theirs by extending their
compiler with the appropriate SMT encoding.

• Substructural non-interference offers strong guarantees
for this kind of reasoning anywhere, whether in a
standalone implementation or for embeddings into a
more general setting.

21

Session Types, Choreographies, Typestate: Focus on the future
rather than the past: they only tell you what can be done
computationally, not what form a computation already has.

• Occasionally adopt slightly more alien computational
models like process calculi.

21

• Information flow can be captured using
familiar machinery for parametric
polymorphism.

• Building on this, substructural information
flow provides essential security and
behavioral reasoning tools.

• These tools have been proved to be sound
via substructural non-interference, a
powerful property that generalizes typical
non-interference.

hsgouni@cs.cmu.edu / @hgouni@hci.social
21

	An Opinionated Guide to Information Flow 🧩
	Information Flow via ✨ Polymorphism ✨
	✨ Substructural ✨ Information Flow
	Substructural Non-Interference 🦖70🔥
	Other Cool Work 🧭

