
Action-Based Test Carving for Android Apps
Anonymous Author(s)

Abstract—Effective software testing of Android apps should
combine different types of tests, including end-to-end tests to
validate user flows and unit tests that provide focused executions.
However, the tight coupling between the Android framework and
the apps makes unit testing challenging: unit tests are executed
on the device against the actual Android framework, which is
cumbersome and time-consuming, or they cannot access its full
implementation, which might prevent correctly testing the units’
behavior. To address this issue, we propose a novel technique
called ARTISAN that (i) traces the app execution during end-
to-end testing on Android devices, (ii) identifies focal methods
to test, (iii) carves the necessary preconditions for testing those
methods from the collected traces, and (iv) synthesizes executable
unit tests that can run outside Android devices. As our evaluation
involving open-source Android apps with existing end-to-end tests
shows, ARTISAN can quickly generate unit tests that cover a
significant portion (i.e., 45% on average) of the code exercised
by the end-to-end tests.

I. INTRODUCTION AND MOTIVATION

Testing is an essential aspect of the software development
life cycle and is crucial in improving software quality. For
Android applications (or apps in short), testing is critical to
avoid failures that can lead to the disruption of mission-critical
activities, loss of reputation, and customer loss.

A good testing strategy needs to find an appropriate balance
between the fidelity of the tests, testing speed, and testing
reliability [1]. To achieve this balance, app developers can
create tests at different granularity levels [1]. End-to-end tests
exercise large parts of an app throughout its User Interface
or Graphical User Interface (GUI) and help developers check
user flows. Unit tests focus on a small portion of an app and
help developers debug and test regression. Finally, medium
tests check the integration of units. In the Android realm,
developers also need to decide on which platform tests shall
run [1]. Instrumented tests execute on an Android device,
either physical or emulated, whereas Local tests, instead,
execute on a Java virtual machine (JVM).

Although it is possible to create tests by combining gran-
ularity levels and execution environments (e.g., unit tests that
run in the Android device), related work on app testing [2],
[3] observed that instrumented end-to-end GUI tests and local
unit tests are the most frequently used.

Researchers and practitioners proposed several automatic
and semi-automatic techniques to help app developers create
end-to-end instrumented tests (e.g., [4]–[16]). However, only
a few existing techniques [17], [18] for automatically creating
local unit tests have been proposed even though developers
would benefit from having those tests which run fast and sim-
plify debugging activities [2]. Existing techniques have limited
applicability as they require substantial manual effort [17] and
are not based on the tester’s intent [18] (i.e., they are based

on an input generation strategy). Additionally, they cannot
handle the technical challenges of testing typical Android
apps that (i) operate through event-based and inversion-of-
control paradigms (i.e., everything, including the instantiation
of components required as a precondition by the unit tests,
is orchestrated by the Android framework), (ii) are executed
in a different environment than unit tests, and (iii) require
replacing Android components with test doubles [3], [19],
[20] using libraries such as Robolectric [21] that are not
comprehensive [22].

Test carving [23] has been proposed for generating unit tests
from end-to-end tests by either checkpointing portions of an
application state and reloading it during unit testing to set the
test preconditions (i.e., state-based carving) or by extracting
units of execution from end-to-end executions and replaying
them as part of the generated unit tests (i.e., action-based
carving). The potential benefits of test carving include im-
proving regression testing effectiveness by enabling standard
regression test selection techniques, reducing the sensitivity
to interference bugs by better isolating tests, and enabling
developers to perform more focused debugging activities.
Consequently, various techniques for performing test carving
have been proposed (e.g., [23]–[32]). However, to the best of
our knowledge, no technique allows carving unit tests across
different platforms while addressing the challenges of locally
testing Android apps.

To address those challenges, we propose ARTISAN, an
action-based test carving technique that takes as input the
app under test (AUT) and its end-to-end GUI tests and
automatically produces a set of locally executable unit tests as
output. In a nutshell, ARTISAN (1) instruments the AUT to
enable tracing of method invocations at runtime; (2) it executes
the end-to-end GUI tests against the instrumented app on an
Android (possibly emulated) device; (3) it identifies and carves
the relevant method invocations for testing a unit from the
collected traces; and, (4) it synthesizes locally executable unit
tests that feature suitable test doubles.

We evaluated ARTISAN using five apps and 152 end-to-
end GUI tests. Since this work is the first step towards effec-
tively unit testing Android apps, we focus our investigation
on how ARTISAN can quickly generate carved executions
from GUI tests and how different strategies to identify focal
methods compare to each other. Additionally, we report on
some of the generated tests’ characteristics (e.g., length, num-
ber of stubs) to foster future studies involving Android app
developers and further research on improving unit test qualities
(e.g., readability, maintainability) and test oracles generation.
Using the best-performing carving strategy, in 43 minutes (on
average) ARTISAN generated 2, 087 local unit tests that cover



ResultActivityMainActivity MainActivity MainActivity

Type Text:
1+1

Hide
Keyboard

Press Button:
Calculate

Intent

21+1 1+1 2

Fig. 1: Main user flow of BASICCALCULATOR.

45% (on average) of statements exercised by the original end-
to-end GUI tests. Our technique did not obtain 100% of the
original end-to-end tests’ coverage as ARTISAN (i) focuses
on executions originated in the apps’ main thread (the user-
facing thread [33]) from Android activities (a key user-facing
Android component [34]) and (ii) does not refactor the original
source code of the apps (which would be required to handle
executions originating from callbacks defined in anonymous
classes).

In summary, this paper makes the following contributions:
• An automated technique that performs action-based test

carving for Android apps.
• An publicly available implementation of the technique

(see replication package [35].
• An empirical evaluation that provides initial evidence of

the effectiveness and efficiency of our technique.
Based on the current achieved results, we believe that AR-

TISAN can provide local unit tests with significant coverage
to developers and help them better test Android apps.

II. BACKGROUND AND RUNNING EXAMPLE

To introduce background concepts and present our tech-
nique, we created an illustrative Android app called BAS-
ICCALCULATOR. The app solves user-provided mathematical
expressions.1

Android apps are composed of Activities, software
components whose life cycle (e.g., creation, destruction) and
communications are handled by the Android framework.
For example, BASICCALCULATOR consists of two activities:
MainActivity, which initializes the app, parses input expres-
sions and solves them, and ResultActivity, which shows
the results to the users in a new screen (see Figure 1).

Activities are loosely-coupled and communicate via mes-
sage passing. Messages are called Intents and can contain
arbitrary, serializable payload.

Activities are also event-based: their logic is encapsulated
into listeners and callbacks, and the dispatch of predefined
events by the Android framework triggers their execution.
Typical examples of such event listeners are life-cycle events
(e.g., create, destroy) and events generated by GUI elements
(e.g., buttonPressed). For instance, MainActivity sets up
the app GUI, i.e., the text input field and the “Calculate”

1Although we did not consider BASICCALCULATOR in our empirical
evaluation, we included it in the replication package.

1 @RunWith(AndroidJUnit4.class)
2 @LargeTest
3 public class MainActivityTest {
4

5 @Test
6 public void testCalculate() {
7 onView(withId(R.id.input)).perform(typeText("1+1"));
8 Espresso.closeSoftKeyboard();
9 onView(withId(R.id.calculateButton)).perform(click());

10 onView(withId(R.id.resultView)).check(matches(withText(
"2")));

11 }
12 }

Listing 1: GUI test stressing BASICCALCULATOR main user
flow.

button shown in Figure 1, and registers the various callbacks
to promptly handle user interactions (e.g., the pressing of
the “Calculate” button) when the create event is triggered.
Its sendResult method, instead, is invoked when the user
presses the “Calculate” button, fetches the content of the text
input field, and invokes the eval methods to compute the
results that, finally, ResultActivity shows. Notably, GUI
elements extend android.view.View and can be retrieved
by invoking the method findViewById using the unique IDs
defined by Android. Starting another activity, instead, requires
calling startActivity and passing an intent that contains a
reference to the activity to start (e.g., ResultActivity) and
an optional payload (e.g., eval’s result).

Testing BASICCALCULATOR main user flow can be done
using tests similar to the GUI test in Listing 1; doing so
requires developers to (i) build the app, (ii) install it inside
an Android device or emulator, and (iii) execute the test
interacting with the app’s GUI on that device.

An alternative for testing BASICCALCULATOR is to use
local unit tests that are focalized on specific units of
code and can be run on any standard JVM. Listing 2 re-
ports a local unit test generated by ARTISAN for check-
ing the behavior of MainActivity’s sendResult under
the same conditions observed while running the GUI test
in Listing 1. From this code snippet, one can note that
test_MainActivity_sendResult_001 implements a com-
plex setup to ensure that objects such as “Calculate“ button
and the text input field, which are normally provided by the
Android framework, are also available during unit testing.

Since those Android-managed objects cannot exist outside
Android devices, ARTISAN replaces them with stubs and
mocks. Specifically, ARTISAN relies on state-of-practice
libraries such as Mockito [36] and Robolectric [21] that
provide basic stubbing capabilities and the ability to (partially)
simulate the Android framework on the JVM. In our example,
ARTISAN created a simple mock of the “Calculate” button
(Lines 8–11), nested mocks that simulate accessing the text
input field (Lines 18–25), and “injected’ these mocks into
Robolectric to enable their execution (Lines 29–30).

In summary, this motivating example shows how complex
Android apps’ unit tests can be and illustrates some of the
technical challenges involved in generating them.



1 @RunWith(RobolectricTestRunner.class)
2 @Config(shadows = { EditTextShadow28.class })
3 public class Test028 {
4

5 @Test(timeout = 4000)
6 public void test_MainActivity_sendResult_001() {
7 // Mock the Calculate button
8 Button button2 = Mockito.mock(Button.class);
9 Stubber stubber3 = Mockito.doReturn(R.id.

calculateButton);
10 Button button3 = stubber3.when(button2);
11 button3.getId();
12 // Instantiate MainActivity using Robolectric
13 ActivityController controller = Robolectric.

buildActivity(MainActivity.class);
14 MainActivity mainactivity = controller.get();
15 // Simulate triggering "create" event
16 controller.create();
17 // Mock the text input field
18 SpannableStringBuilder stringbuilder3 = Mockito.mock(

SpannableStringBuilder.class);
19 Stubber stubber4 = Mockito.doReturn("1+1");
20 SpannableStringBuilder stringbuilder4 = stubber4.when(

spannablestringbuilder3);
21 spannablestringbuilder4.toString();
22 EditText edittext3 = Mockito.mock(EditText.class);
23 Stubber stubber5 = Mockito.doReturn(

spannablestringbuilder3);
24 EditText edittext4 = stubber5.when(edittext3);
25 edittext4.getText();
26 // Inject the mocks in Robolectric
27 EditText edittext2 = mainactivity.findViewById(R.id.

input);
28 EditTextShadow28 edittextshadow = Shadow.extract(

edittext2);
29 edittextshadow.setMockFor("android.widget.EditText:

android.text.Editable getText()", edittext3);
30 edittextshadow281.setStrictShadow();
31 // Invoke the Method Under Test
32 mainactivity.sendResult(button3);
33 }
34 }

Listing 2: A unit test carved by ARTISAN for
BASICCALCULATOR

III. TECHNIQUE

ARTISAN is an end-to-end approach composed of several
steps (Figure 2). It starts by instrumenting a non-obfuscated
Original App written in Java to enable tracing method invoca-
tions. Next, it executes the Instrumented App on an Android
device against GUI Tests to collect Execution Traces. Then, it
parses the traces into a form amenable to automatic analysis
(i.e., graphs) and carves the original executions. Finally, it
augments the Carved Executions with code that mocks de-
pendencies provided by third-party libraries and the Android
framework and synthesizes the source code of the Carved Unit
Tests from the Extended Carved Executions.

Notably, ARTISAN generates carved unit tests in the static
single-assignment (SSA) form [37], an intermediate program
representation widely used in compilers in which each variable
has only one definition site. Although programs written in
SSA form are generally longer than programs written in other
forms, which might affect their readability, we decided to
generate test code in SSA form for two main reasons: on
the one hand, it is easy to translate the carved executions in
this form; on the other hand, SSA enables the application of

Instrument.

Instrumented
App

Original App GUI Tests

Execution
Traces

Parsing Carving

Mock 
Generation

Parsed
Traces

Carved 
Executions

Carved
Unit Tests

Tracing

Test
Synthesis

Extended Carved
Executions

Fig. 2: An overview of ARTISAN’s end-to-end approach to
carving local unit tests from instrumented GUI tests.

standard program analyses (e.g., live variable analysis) and
optimization techniques (e.g., test minimization [38]).

A. Instrumentation and Tracing

Action-based test carving is a dynamic analysis technique
that requires execution traces to identify the units of execution,
i.e., method invocations, that are relevant for testing code units.
Therefore, ARTISAN instruments the original AUT using the
byte-code modification library Soot [39].

ARTISAN adopts a light-weighted approach to trace An-
droid apps and generates traces in plain text, making it possible
for developers to easily inspect them. Specifically, ARTISAN
injects code that logs for each method invocation, the method
signature, the actual parameters, and any returned values or
thrown exceptions.

Tracing focuses only on AUT’s operations, therefore, it
instruments the method bodies of all the methods that belong
to the AUT, whereas it treats third-party libraries, standard
language libraries, and the Android runtime as black boxes.
Consequently, ARTISAN can only trace the invocations of
methods that belong to those operations that are made by
the AUT. Notably, ARTISAN differentiates between calls to
instance and static methods, traces method calls at different
visibility levels and distinguishes whether methods return
normally or exceptionally. In the latter case, the trace contains



also the indication of whether the exceptional behavior was
caused by a checked or an unchecked exception.

Differently than state-based carving, ARTISAN does not
check-point the application state nor serialize the objects
used as parameters or return values. Instead, it manages
all the object instances, including exceptions, by-reference
and stores in the trace only their object id. ARTISAN
obtains the object id of non-null instances by calling
System.getObjectIdentity() to capture the actual object
types along with their hash codes. To avoid cluttering the
execution traces, ARTISAN manages primitive types, boxed
primitive types, and “stringly” types2 by-value and reports only
their string representation.

Action-based carving implicitly assumes that all interactions
between objects happen exclusively via method invocations;
unfortunately, units of executions like array stores, array
accesses, and field assignments are not implemented as method
calls in Java and would be missed if not properly handled.
To avoid missing such fundamental units of execution, AR-
TISAN implement a custom instrumentation code that traces
them as synthetic methods. For example, it traces an array
store like array[0] = 10 as the generic method invocation
abc.ArrayOperation.set(array, 0, 10).

As discussed in Section II, activities communicate by pass-
ing Intent objects that the Android framework serializes in
a stream of bytes and deserializes into actual objects. Thus,
the object ids of serialized and deserialized objects differ,
which effectively breaks the (logical) connection between
them. To avoid losing this connection, ARTISAN leverages
application level taint tracking [40], [41]. Instead of modifying
the Intent’s bytecode to accommodate the tainting value, i.e.,
the object id of the intents to be sent, ARTISAN stores the
tainting values directly in the intents as a regular payload using
a special key before Android sends them. To read the tainting
value, instead, ARTISAN injects custom code that is invoked
before the receiving activity accesses the payload. This custom
code extracts from the payload the tainted value by invoking a
standard Intent method using the special key as a parameter.
Doing so enables ARTISAN to trace that method invocation,
effectively exposing the logical connection between sent and
received intents.

B. Trace Parsing

After tracing the execution of the GUI tests, ARTISAN
parses the generated execution traces into graph data structures
that capture various types of dependencies between method
invocations and object instances. Specifically, ARTISAN
captures chronological, data, and (method) call dependen-
cies. Chronological dependencies capture the order in which
method invocations have been traced; hence, they are useful
to identify (past) method invocations that may be useful to set
test preconditions. Data dependencies, instead, identify method
invocations that act on the same objects; hence, they are

2Strings and CharSequences are an example of types that ARTISAN treats
as primitives.

useful to identify test preconditions. Finally, call dependencies
capture the (nesting) relations among the method invocations;
hence, they are useful to ensure that carved method invocations
are executed the right amount of times (e.g., no duplicate
executions). ARTISAN parses each execution trace file into
the following three graphs:
Execution Flow Graph. This is a (doubly) linked list whose
nodes represent method invocations and edges the (strict)
precedence/follow relations (i.e., IS BEFORE and IS AFTER).
Data Dependency Graph. This is a directed graph that links
method invocations to data nodes and data nodes to method
invocations. Data nodes can be either object instances or
primitive values. Object instances can be linked to multi-
ple method invocations, whereas primitive values are always
linked to one and only one method invocation. In this graph,
two nodes are linked when (i) an object instance OWNS a
method invocation; (ii) a data node is used as a PARAMETER
of a method invocation; (iii) a STATIC data node is used inside
a method invocation; (iv-a) a method invocation RETURNS a
data node or (iv-b) THROWS an exception.
Call Dependency Graph. This is a directed, acyclic, dis-
connected graph whose nodes represent method invocations
and edges the INVOKE relation. Notably, this graph is a forest
because Android apps can have multiple entry points.

After parsing is completed, ARTISAN decorates the graphs
by including additional information that will be used later dur-
ing carving and test synthesis. This step includes (i) identifying
method invocation nodes that are owned by Android com-
ponents, like Activities, and tagging the nodes corresponding
life cycle events callbacks (e.g., onCreate); (ii) aliasing data
nodes that correspond to sources and sinks of tainted intents
and their payload; and, (iii) injecting static dependencies.

C. Action-based Carving

The carving process begins after parsing the execution
traces and considers only one trace at a time. At first,
ARTISAN selects “carvable” targets, i.e., the method invo-
cations for which developers want to generate unit tests. In
general, there are no restrictions on which method invocations
can be carved; however, carving some method invocations,
such as private methods and methods that do not belong
to the AUT might produce non-compilable or irrelevant unit
tests. Therefore, ARTISAN automatically filters out invoca-
tions of private methods and invocations whose owner type
(e.g., basiccalculator.MainActivity) does not match
the AUT’s package name (e.g., basiccalculator). Among
the remaining method invocations, ARTISAN selects the ones
that match user-defined criteria on the methods’ signature,
actual arguments, and return values. In case an end-to-end test
makes multiple calls to the same target method ARTISAN
provides a special option to either select one (i.e., the first) or
all the invocations of that method as “carvable” targets (i.e.,
ARTISAN can use different carving strategies).

After selecting the target method invocations, ARTISAN
finds all the method invocations that are relevant to them,



either directly or indirectly, using a backward slicing algo-
rithm: Starting from a target method invocation, this algorithm
identifies the past method invocations that match one of the
following three conditions: (1) the method invocation shares
the same owner with the target method invocation; (2) the
method invocation is owned by a parameter used by the target
method invocation; or, (3) the method invocation belongs to a
static class used within the target method body.

Since the selected method invocations might introduce addi-
tional dependencies (e.g., parameters to be set), this algorithm
iteratively carves each of them. Nevertheless, the algorithm
converges because, at every iteration, it considers a smaller
set of dependencies. Moreover, as the “carvable” targets are
considered sequentially and might share dependencies, ARTI-
SAN caches intermediate results and speeds up the algorithm.

Once the algorithm selects all the method invocations rel-
evant to a “carvable” target, ARTISAN uses the call depen-
dency graph to retrieve all the additional method invocations
that would be executed because the relevant method invo-
cations are. For instance, in our working example, invoking
sendResult with a valid mathematical expression in a unit
test would also cause it to automatically execute eval. Given
this “extended” set of method invocations, ARTISAN creates
carved executions by extrapolating the connected components
they form in the execution flow graph, the data dependency
graph, and the call dependency graph.

As the last step, ARTISAN “cleans up” the carved ex-
ecutions by removing those units of computation, such as
Lambdas, which naturally occur in Android apps but cannot
be directly instantiated in the unit tests, and re-carves the
target method invocations within the carved trace executions
to ensure they remain consistent.

D. Mock Generation

Carved executions contain a list of executed method in-
vocations and their data dependencies; hence, they are not
yet executable code. Additionally, they might lack the method
invocations necessary to instantiate objects that are managed
by Android or instantiated by third-party libraries. In this case,
the carved execution contains uses of those objects, but not
their definitions. We label those objects that are used but never
instantiated in the scope of the carved executions as dangling.

ARTISAN deals with dangling objects by means of mock-
ing, a standard technique that improves the reliability of unit
tests by replacing complex dependencies, i.e., other objects,
with pre-programmed test doubles. Specifically, ARTISAN
tracks how each dangling object is used within the carved
executions and automatically programs a mock object that
can replicate the (observed) behavior within the unit tests. If
a stubbed method invocation on a mocked dangling object
returns another dangling object, then ARTISAN reproduces
its behavior utilizing another automatically configured mock
object; the process continues until there are no more dangling
objects left. Thus, synthesizing mocks is an iterative activity
based on forward slicing (i.e., the opposite of carving). Since
the number of data dependencies to consider is finite and

shrinks at every iteration to the algorithm, also synthesizing
mocks is guaranteed to always terminate.

Having programmed the mock objects is not enough be-
cause Robolectric, which simulates the Android framework on
the JVM by wrapping Android’s classes using shadow objects
that can modify or extend their behavior [21], is not aware
of them. Hence, it will not use them during the execution of
the unit tests. Therefore, ARTISAN extends Robolectric by
automatically synthesizing new shadow objects that take the
just-programmed mocks as input and use them to replicate the
expected behavior of the Android-managed object.

E. Synthesis of Carved Unit Tests

At this point, all the test preconditions are either instantiated
or mocked, and ARTISAN can finally synthesize the code
implementing the unit tests by transforming the (extended)
carved execution’s call dependency graph root-level nodes,
i.e., the directly “visible” method invocations, into their cor-
responding source-code method invocations. While doing so,
ARTISAN relies on the data dependency graph to generate
all the variables needed to host the references or values that
correspond to methods’ owners, parameters, and return values.
Notably, the (extended) carved executions do not contain
complex control flows; thus, the generated tests consists of
a number of variable declarations and a sequence of method
invocations, as one would expect from unit tests.

To generate the mocking code which stubs the methods
contained in the extended carved executions, ARTISAN uses
a predefined template: For each dangling object do, (1) it
declares do as a mock object using Mockito (Line 8); (2) it
specifies which object (if any) the mock should return (Line 9)
and (3) after its stubbed method sm is invoked(Line 10);
finally, (4) it invokes the stubbed method sm on do to
activate the mocking (Line 11). To inject the pre-programmed
mock objects inside the Android GUI elements simulated
by Robolectric, instead, ARTISAN (1) retrieves the GUI
elements from the activity using their (known) unique ID by
invoking the method findViewById (Line 27); (2) it extracts
the shadow objects simulating them (Line 28), and (3) passes
the mock objects to the shadows (Line 29). Since Robolectric
and Mockito lack a proper integration, ARTISAN synthesizes
custom shadows that act as a bridge between the two libraries
dynamically. In turn, these shadows allow the mock objects to
be executed inside Robolectrics’ Android simulations.

IV. LIMITATIONS

In its current implementation, ARTISAN can synthesize
executable unit tests that lack test oracles, do not involve any
Android components besides (simulated) activities, intents,
and GUI elements, and consider only traces generated by the
main Android thread. We argue that automatically generating
test oracles, which is currently an open research problem, is
outside the scope of this first work on carving unit tests for
Android apps, and it could be partially addressed by existing
approaches based on mutation analysis [42] or Deep Learning



TABLE I: Benchmarks used in the empirical evaluation.

ID Name Category Version LOC (K) GUI Tests
A1 BLABBERTABBER Tools 1.0.10 2.4 9
A2 FIFTHELEMENT Music 2.2.5 69.8 17
A3 OWL FLASH CARDS Education 1.1 6.4 12
A4 PRISMACALLBLOCKER Tools 1.2.3 12.0 67
A5 UK-GM Education 1.2.1 5.3 47

Language models [43], [44]. Extending ARTISAN’s imple-
mentation to handle more Android components and multiple
threads, instead, is mostly an engineering effort.

Regarding our evaluation, we did not involve developers
to evaluate the quality of carved tests. We plan to perform
such an evaluation in future work. Specifically, we plan to
perform studies with developers to understand which carved
tests best help developers and explore alternative carving
strategies based on the results of the studies.

V. EMPIRICAL EVALUATION

We evaluated ARTISAN’s effectiveness and efficiency em-
pirically on a set of open-source, well tested Android apps.
Specifically, we targeted the following research questions
(RQs):

RQ1: Can ARTISAN carve unit tests from GUI tests?
RQ2: What is the cost of running ARTISAN?
RQ3: What are the characteristics of carved tests?
RQ4: How do different carving strategies compare?

A. Experimental Benchmarks

For the empirical evaluation, we used a set of five open-
source Android apps (Table I). We used open-source apps
because through their public repositories they make available
both their source code, required by ARTISAN, and the
existing GUI tests, required by our evaluation. To identify
relevant apps, we used a dataset of 1, 002 apps with tests from
related work [2]. The apps in the dataset are publicly available
on GitHub [45] and, to the best of our knowledge, the dataset
was the largest set of apps with tests at the time we started
evaluating ARTISAN.

We selected the five apps from the dataset as follows: First,
we identified apps that contain GUI tests written in Espresso;
this step identified 245 relevant apps. We identified GUI
tests written in Espresso by analyzing whether the abstract
syntax trees (ASTs) of the test files contained invocations
of the Espresso API. Second, we filtered out apps that use
programming languages other than Java (e.g., Kotlin), as
ARTISAN does not currently support them; this step left us
with 180 apps. Third, we sorted the 180 apps in descending
order based on the number of GUI tests associated with the
apps and processed the list of apps starting from the one
having the highest number of tests. We discarded any app
that we could not build and for which the available GUI tests
did not pass or showed flakiness [46]. We stopped as soon
as we identified five apps. We could not build or run some
of the top-ranked apps as those had outdated dependencies,
required an API key for a third-party service used by the apps,

or interacted with Web servers not reachable anymore. We
determined whether all tests were passing and were not flaky
by checking whether all tests passed in ten runs of the tests.

Table I summarizes the main elements of the apps we
considered in the evaluation. For each app, the table reports
an identifier for the app (ID), its name (Name), the category of
the app (Category), its version (Version), the number of source
and test code lines (in thousands) (LOC (K)), and the number
of existing GUI tests (GUI).

B. Experimental Settings

To answer the RQs, we ran ARTISAN on the five apps
considered on a dedicated workstation with 128GB of memory,
an Intel i9-9900K 3.60GHz processor, and running Ubuntu
18.04. To execute the GUI tests, we used an Android Nexus 5X
emulator running API 28. We used API 28 as it was compatible
with all the selected apps according to their supported Android
API versions [47].

In the RQs, we evaluated ARTISAN using different carving
strategies, i.e., different approaches for selecting the target
method invocations to carve from the traces generated by GUI
tests’ execution. RQ1, RQ2, and RQ3 are based on a strategy
(Strategy-I) that, for each trace, selects as carving targets only
the first occurrence of method invocations with the same fully
qualified method signature. The idea behind using this strategy
is that it allows for covering the behavior of multiple methods
while limiting the cost of running the technique. This strategy
might carve the same method multiple times across different
traces. Still, we think that this is reasonable as the traces
originate from different GUI tests that likely have different
objectives. RQ4, instead, compares three carving strategies.
The first strategy (Strategy-I) is the same as the one used to
answer RQ1, RQ2, and RQ3. The second strategy (Strategy-
II) selects as carving targets all the method invocations of
non-private methods defined in the AUT. In this strategy, we
use a timeout of 10 hours for carving tests to evaluate the
case in which the technique runs overnight. The third strategy
(Strategy-III) selects carving targets as the second one but
changes the timeout to 5 hours. We decided to use this strategy
to investigate the effectiveness of ARTISAN in a context
where the results of the technique can be used on the same
day as the technique is started (i.e., the results can be used for
the development activities of the day).

C. Results

1) RQ1: Can ARTISAN carve tests from GUI tests?:
Table II reports the results of running ARTISAN on the
benchmark apps using Strategy-I. For each app, the table
reports the identifier of the app (ID), the number of traces
collected from running the GUI tests associated with the app
(Traces), the number of method invocations in the traces
(Method Invocations), the number of traces that ARTISAN
could parse while carving tests (Parsed Traces), the number of
method invocations selected by the carving strategy (Targets),
the number of tests carved (Carved Tests), and the statement
and branch coverage achieved by GUI and carved tests (GUI



TABLE II: Results of running ARTISAN on the benchmarks using Strategy-I.

ID Traces Method Invocations Parsed Traces Targets Carved Tests Statement Coverage (%) Branch Coverage (%)
GUI Tests Carved Tests Included GUI Tests Carved Tests Included

A1 9 1,654 9 55 48 45 12 100 35 11 100
A2 17 35,495 17 1,559 1,004 49 18 100 35 15 100
A3 12 13,306 12 221 126 64 30 98 36 14 100
A4 67 31,151 67 1,479 821 64 29 99 52 23 100
A5 47 230,055 3 295 88 90 50 100 65 16 100

Tests and Carved Tests columns under the Statement Coverage
and Branch Coverage headers). Additionally, the table relates
the coverage of carved tests with the one of GUI tests (columns
labeled with Included under the Statement Coverage and
Branch Coverage headers) by reporting the percentage of
coverage from carved tests that also appears in GUI tests.

Overall, ARTISAN carved 2,087 tests from 152 GUI tests.
The carved tests cover 45.28% and 41.33% of the statements
and branches that are covered by the GUI tests. The overall
number of targets is 3,609, and the number of method invo-
cations in the traces is 311,661. The difference between the
number of method invocations in the traces and the number
of targets is due to the fact that the traces contain a large
number of method invocations whose definition is not inside
the AUT (i.e., the methods are defined in the Java standard
library, third-party libraries, or the Android framework) and
due to the carving strategy we adopted.

The difference between the number of targets and the
number of carved tests is caused by some limitations in
the implementation of the technique (see Section IV) and
our design choice to reject unit tests in which the method
under tests are not directly called. Additionally, some targets
cannot be carved by ARTISAN as those are methods in
anonymous classes (e.g., callback handler definitions for GUI
elements) that cannot be directly invoked in Java. To carve
those targets, ARTISAN could use a preprocessing step that
refactors the code of the app such that those methods are not
part of anonymous classes. However, we did not implement
such a solution as it could lead to unwanted changes by the
developers. There is a need for studies and interviews with
developers to investigate this aspect, and we leave those studies
as a possible direction for future work.

The design choices, limitations in the implementation of the
technique (Section IV), the focus on ARTISAN on executions
originating in the main thread [33], and the focus on Android
activities are the reasons why the coverage of carved tests is
not 100%.

Table II also compares (columns Included under the State-
ment Coverage and Branch Coverage headers) the statement
and branch coverage achieved by GUI and carved tests.
Specifically, we look at how much of the coverage in carved
tests also appears in the GUI tests used for generating them.
In other words, these columns reveal whether the carved tests
cover portions of the apps that are not covered by the GUI tests
(i.e., lead to spurious coverage). We computed this information
by extending JaCoCo [48], the coverage tool we used in the

TABLE III: Time cost of running ARTISAN using Strategy-I.

ID
GUI Tests

Execution Time
Before Instrumentation

ARTISAN

Instrumentation
Time

GUI Tests
Execution Time

After Instrumentation

Carving
Time

A1 34s 10s 36s 7s
A2 2m56s 28s 3m26s 38m07s
A3 1m49s 18s 1m41s 31s
A4 6m10s 15s 6m24s 3m12s
A5 4m51s 19s 6m53s 6m16s

experiments. All the branches covered in the carved tests are
also covered by the GUI tests. In terms of statement coverage,
instead, there are a few statements (in two of the five apps) that
are covered by the carved tests but not by the GUI tests. We
analyzed the tests leading to the discrepancies and identified
that the cause behind the discrepancy is a different behavior
of some of the Android API methods when they execute
on an Android device and the JVM (via Robolectric). This
situation can appear because Robolectric is a partial model of
the Android framework.

RQ1 answer: Yes, ARTISAN can carve tests from GUI
tests. Additionally, carved tests cover 45.28% and 41.33%
of the statements and branches that are covered by the GUI
tests and rarely have spurious coverage.

2) RQ2: What is the cost of running ARTISAN?: Table III
provides details on the execution time for running ARTISAN
on the benchmark apps when using Strategy-I. For each app,
the table provides the identifier for the app (ID), the time to
execute the GUI tests before instrumenting the app (GUI Tests
Execution Time Before Instrumentation), the time needed to
instrument the app (Instrumentation Time), the time to execute
the GUI tests after instrumenting the app (GUI Tests Execution
Time After Instrumentation), and the time to carve the tests
(Carving Time). The time values reported in Table III are
averages across 10 runs of ARTISAN.

ARTISAN was able to generate carved tests in less than one
hour for each app considered. The technique was the fastest
when analyzing A1 and, in this case, ARTISAN took only
53 seconds. The technique took the longest when analyzing
A2, roughly 42 minutes. The time to instrument the apps is
negligible for the selected apps, especially considering that
instrumentation is a one-time activity. The overhead introduced



Fig. 3: Test size (y-axis) for carved tests generated by ARTI-
SAN with Strategy-I. The graph uses a logaritmic scale.

by the instrumentation when running the GUI tests is 16.34%.
We believe that the overhead is reasonable as it is low and
did not affect the test execution behavior (i.e., all that passed
before the instrumentation also passed after instrumenting the
apps). The time to carve tests, instead, varies significantly
between apps. We analyzed the causes behind the variance and
identified that the main contributing factors are the presence
of static method invocations in the traces and the size of the
carved executions. Static method invocations affect the carving
time as all the invocations to the same static classes need to be
(conservatively) taken into account when analyzing the targets
those invocations precede. Larger sets of required method
invocations also affect carving time as it takes longer to
extrapolate connected components from the graphs to generate
the corresponding carved executions.

RQ2 answer: Based on the results of our evaluation, we
believe that the time cost of running ARTISAN is low. For
the apps considered, the technique always terminated within
an hour and, in some cases, within a few minutes.

3) RQ3: What are the characteristics of carved tests?: To
characterize carved tests, we consider the size of the unit tests
and the number of mocks contained in them. We focus on test
size as larger tests can be harder to maintain and can lead to
test smells [49]. We also focus on the number of mocks as
they are not always straightforward to set up [3], [50]; hence,
having tests with them can potentially help app developers.

For each app considered, Figure 3 reports the size of the
carved tests. The boxplot chart reports the size of the tests on
the y-axis and uses the log scale. We computed the size of
each test by counting the number of statements in the tests.
The results reported in Figure 3 are promising. For four out of
the five apps considered, the median number of statements in
the tests is less than 10. A2 is the app with the largest number

of statements per test. We observed that this app requires
setting some values in its database for a larger number of
tests which, in turn, led to an increase in the size of the tests.
Considering that most tests have a reasonable size, we believe
that ARTISAN can provide developers with tests that might
be useful in debugging activities.

The total number of mocks in the carved tests, instead, is
241. The ratio between the number of tests and the number of
mocks follows the ratio of developer-written tests in some of
the apps analyzed by related work on test doubles in Android.

Based on our experimental results, we argue that the tests
generated by ARTISAN, both in terms of test size and the
mocks they provided, could be actionable for developers.
However, to confirm this hypothesis, studies and interviews
with developers are necessary; hence, we suggest them as
possible future work.

RQ3 answer: the tests carved by ARTISAN tend to be
concise and provide mocks that are required for testing cer-
tain parts of the apps. Considering the tests’ characteristics,
we believe that the tests can be actionable for developers.

4) RQ4: How do different carving strategies compare?:
We compare the three carving strategies considered (Strategy-
I, Strategy-II, and Strategy-III) in terms of execution time,
coverage achieved by the generated tests, and generated tests’
size.

The total execution time for Strategy-I across all apps is
48 minutes, for Strategy-II is 16 hours, and for Strategy-
III is 10 hours. As we expected, Strategy-I is significantly
faster than the other two strategies as these take into account
a higher number of carvable targets. Strategy-II and Strategy-
III are characterized by a timeout, and the timeout was
hit once in Strategy-II and twice in Strategy-III. (This
result is the reason why the total time for Strategy-II and
Strategy-III is not 50 and 25 hours, respectively.) In the three
cases that the timeout was hit, ARTISAN could not finish
processing all the targets selected by these strategies. Note
that increasing the timeout values would go against the idea
behind these strategies, i.e., we selected the timeouts to study
how the strategies would perform when used in a practical app
development context.

Figure 4 and Figure 5 compare the statement and branch
coverage of the tests generated by the three strategies. Interest-
ingly, despite Strategy-II and Strategy-III considering more
targets and taking longer to execute, the coverage achieved by
the carved tests between Strategy-I and the other strategies is
comparable. This observation suggests that Strategy-I might
be more appealing in terms of coverage than the other ones.
Strategy-II and Strategy-III generated a higher number of
tests than Strategy-I (10, 756 and 7, 867 versus 2, 087) and
might have better fault-finding ability. We leave the inves-
tigation of the fault-finding ability of carved tests as future
work. In the case of A5, Strategy-I had better coverage than



Fig. 4: Statement coverage comparison between dif-
ferent carving strategies.

Fig. 5: Branch coverage comparison between dif-
ferent carving strategies.

Fig. 6: Test size comparison between different
carving strategies.

the other two strategies. The reason behind this result is that
Strategy-II and Strategy-III took a very long time to process
the targets in one of the traces, and the timeouts were triggered,
thus leading to the generation of a small number of tests.

Figure 6 compares the size of the tests generated using the
different strategies. The y-axis reports the size of the tests,
while the chart uses a log scale. Overall, the test size associated
with Strategy-I is smaller than the other two strategies. This
result is justified by the fact that Strategy-II and Strategy-
III considered multiple targets for the same method, and
targets appearing later in the traces required a larger number
of statements to recreate the preconditions for invoking the
targets.

RQ4 answer: Overall, we believe that Strategy-I is the
most cost-effective strategy as it achieved similar coverage
compared to the other two strategies while being more
efficient.

D. Discussion

ARTISAN is an end-to-end technique to perform tests
carving for Android apps. Implementing such a technique
required a significant technical effort, the mastery of several
technologies, and knowledge from different domains besides
Android. For instance, we employed byte code modification
for instrumenting and tracing the execution, automated build
systems for setting up the evaluation benchmarks, graph theory
and program analysis to carve the execution traces, and Java
code generation to synthesize the unit tests.

There are parts of ARTISAN that provide a solid base
for future work and others that can be further refined. For
instance, instrumentation and tracing of apps, as well as ex-
periment automation, worked smoothly. Similarly, the carving
algorithm and the generation of mocks produced excellent
results. However, the carving algorithm also has some cost
when carving apps that heavily employ loops or implement
overly complex methods. In these cases, carving might take too
long and produce excessively long unit tests that can quickly
become hard to inspect and manage. We postulate that in
these cases, it might be beneficial to combine action-based and
state-based carving such that unit tests can directly load large
objects created with long method sequences, or loops, from
memory. An alternative way to reduce the size of the carved
unit tests might be using other dynamic techniques, such as
delta debugging [51], or employing purity analysis to identify
and filter out method invocations that do not introduce any
relevant dependency. Additionally, different carving strategies



could be explored to make action-based carving more efficient
and effective.

Since ARTISAN selects invocations of non-private meth-
ods as carvable targets, many of the generated tests might
test the AUT under similar or the same execution conditions.
Consequently, the resulting carved test suites might contain
duplicated tests that should be removed. In future work, we
plan to investigate the application of test suite reduction
techniques [52] to identify and remove duplicate tests.

E. Threats to Validity

As it is the case for most empirical evaluations, there are
both external and construct threats to validity associated with
the results we presented. Our results might not generalize
to other apps in terms of external validity. In particular, we
only considered five apps. This limitation is an artifact of the
complexity involved in setting up the infrastructure to run the
apps, which might require customized build configurations and
manually inspecting the results of our analysis. We selected
apps of different sizes that belong to different app categories
and are already considered in related work to mitigate this
threat. In terms of construct validity, there might be errors in
the implementation of our technique. To mitigate this threat,
we extensively inspected the evaluation results manually.

VI. RELATED WORK

The idea of test carving was originally proposed by Elbaum
et al. [23] as a means to generate unit tests, dubbed Differential
Unit Tests, to spot regression errors in Java programs. Elbaum
and co-authors identified three main test carving paradigms:
state-based carving, in which carving takes place on the
system under test’s state recorded during execution; action-
based carving, in which carving takes place on the sequence
of method invocations recorded during execution; and hybrid
carving, which combines the previous two. However, they
implemented only state-based carving. In this area, remarkable
results have been achieved by Krikava and Vitek [24], who
proposed GENTHAT for generating unit tests from execution
traces of R libraries, Kampmann and Zeller [25], who pro-
posed BASILISK for state-based carving of parameterized
unit tests targeting C programs, and, Juvekar et al. [27], who
created a program executing all public methods on a given
object the same way as in a given program trace. Compared
to those works, ARTISAN implements a different form of
test carving, works on Android apps, generates unit tests
across different platforms, and augments carved tests with
automatically synthesized mocks.

ARTISAN generates focused unit tests from execution
traces. Pasternak et al. [32], Saff et al. [29], and Thum-
malapenta et al. [31] achieved the same goal but with dif-
ferent techniques that, respectively, selected the interactions
to recreate the state of objects until a certain point in time,
automatically created focused unit tests by test factoring and

environmental mocks generation, and mined an extensive col-
lection of execution traces to generate generic parameterized
tests using dynamic symbolic execution to cover paths not
contained in the traces. Unlike these techniques, ARTISAN is
not limited to inter-object interactions implemented as method
calls, considers method invocations invoked by frameworks,
and generates focused unit tests.

Action-based carving sets unit tests’ preconditions, i.e.,
objects’ state, by re-executing specific sequences of method
calls that have been observed during end-to-end testing. There-
fore, action-based carving is a sensible solution to the object
creation problem defined by Bach et al. [53]. The main
differences between ARTISAN and the work done by Bach
and co-authors lie in the fact that they first identified feasible
method-call sequences for object creation statically and then
selected the most desirable sequence using a search algorithm.
Another difference is that Bach et al.’s approach is designed
for C++ programs.

Alternative approaches make use of selective capture
and replay techniques. For instance, Orso et al. proposed
SCARPE [28] and JINSI [26] to capture parts of program
execution for later replay and isolate the instructions that lead
to the failure to produce a minimal example that reliably
replays it. Compared to those works, ARTISAN has a broader
scope as it does not consider interactions involving a single
component, can generate tests from both normal and excep-
tional system executions and is capable of carving unit tests
for Android apps.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented ARTISAN, a technique to perform
test carving for Android apps. ARTISAN carves unit tests
from GUI tests by collecting method invocations in the AUT
while running the GUI tests on Android devices, extracting
target method invocations and their preconditions from the
collected information, and synthesizing preconditions and tar-
get method invocations into portable unit tests. We evaluated
ARTISAN on five apps using different carving strategies
and identified that the technique is able to carve tests that
achieve 45% of the original GUI tests’ coverage and does so
in an amount of time compatible with standard development
practices.

In future work, we plan to perform studies and interviews
with developers to understand which carved tests best help
developers and explore alternative carving strategies based
on the gathered insights. We also plan to investigate test
suite reduction techniques to identify duplicate tests among
carved tests. We plan to extend ARTISAN to support apps
written in different programming languages (e.g., Kotlin), and,
more on the engineering side, we also plan to extend the
implementation of ARTISAN to support additional Android
features. Finally, we plan to investigate techniques to carve
oracles from end-to-end tests into oracles suitable for unit
tests.



REFERENCES

[1] Google, “Fundamentals of testing android apps.” [Online]. Available:
https://developer.android.com/training/testing/fundamentals

[2] J.-W. Lin, N. Salehnamadi, and S. Malek, “Test automation in open-
source android apps: A large-scale empirical study,” in 2020 35th
IEEE/ACM International Conference on Automated Software Engineer-
ing. New York, NY, USA: Association for Computing Machinery, 2020,
pp. 1078–1089.

[3] M. Fazzini, C. Choi, J. M. Copia, G. Lee, Y. Kakehi, A. Gorla,
and A. Orso, “Use of test doubles in android testing: An in-depth
investigation,” in Proceedings of the 44th International Conference on
Software Engineering, 2022.

[4] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” Acm Sigplan Notices,
vol. 48, no. 10, pp. 623–640, 2013.

[5] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th annual international conference on
Mobile systems, applications, and services. New York, NY, USA:
Association for Computing Machinery, 2014, pp. 204–217.

[6] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis. New York, NY, USA:
Association for Computing Machinery, 2016, pp. 94–105.

[7] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,
and Z. Su, “Guided, stochastic model-based gui testing of android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2017, pp. 245–256.

[8] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). Piscataway,
NJ, USA: Institute of Electrical and Electronics Engineers, 2017, pp.
23–26.

[9] Google, “Ui/application exerciser monkey.” [Online]. Available:
https://developer.android.com/studio/test/other-testing-tools/monkey

[10] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering. Piscataway, NJ, USA / New York, NY,
USA: Institute of Electrical and Electronics Engineers / Association for
Computing Machinery, 2019, pp. 269–280.

[11] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-based
approach to automated black-box android app testing,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers, 2019, pp. 1070–1073.

[12] J. Wang, Y. Jiang, C. Xu, C. Cao, X. Ma, and J. Lu, “Combodroid:
generating high-quality test inputs for android apps via use case
combinations,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 469–480.

[13] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-
travel testing of android apps,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). New York, NY, USA:
Association for Computing Machinery, 2020, pp. 481–492.

[14] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 153–164.

[15] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso, “Barista:
A technique for recording, encoding, and running platform independent
android tests,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation. Piscataway, NJ, USA: Institute
of Electrical and Electronics Engineers, 2017, pp. 149–160.

[16] Google, “Create ui tests with espresso test recorder.”
[Online]. Available: https://developer.android.com/studio/test/other-
testing-tools/espresso-test-recorder

[17] Y. Liu, Y. Lu, and Y. Li, “An android-based approach for automatic
unit test,” in International Conference on Cyberspace Technology (CCT
2014), 2014, pp. 1–4.

[18] J. Cao, H. Huang, and F. Liu, “Android unit test case generation based
on the strategy of multi-dimensional coverage,” in 7th International
Conference on Cloud Computing and Intelligent Systems, 2021, pp. 114–
121.

[19] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[20] M. Fowler, “Testdouble.” [Online]. Available:
https://martinfowler.com/bliki/TestDouble.html

[21] Robolectric, “Robolectric.” [Online]. Available: http://robolectric.org
[22] ——, “Shadows.” [Online]. Available: http://robolectric.org/extending
[23] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving

differential unit test cases from system test cases,” in Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2006, p. 253–264.

[24] F. Krikava and J. Vitek, “Tests from traces: automated unit test extrac-
tion for R,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 232–241.

[25] A. Kampmann and A. Zeller, “Carving parameterized unit tests,” in
Proceedings of the 41st International Conference on Software Engineer-
ing: Companion Proceedings. Piscataway, NJ, USA / New York, NY,
USA: Institute of Electrical and Electronics Engineers / Association for
Computing Machinery, 2019, pp. 248–249.

[26] A. Orso, S. Joshi, M. Burger, and A. Zeller, “Isolating relevant compo-
nent interactions with jinsi,” in Proceedings of the 2006 international
workshop on Dynamic systems analysis. New York, NY, USA:
Association for Computing Machinery, 2006, pp. 3–10.

[27] S. Juvekar, J. Burnim, and K. Sen, “Path slicing per
object for better testing, debugging, and usage discov-
ery,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-132, Sep 2009. [Online]. Avail-
able: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-
132.html

[28] A. Orso and B. Kennedy, “Selective capture and replay of program
executions,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4,
pp. 1–7, 2005.

[29] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test
factoring for java,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering. New York, NY, USA:
Association for Computing Machinery, 2005, pp. 114–123.

[30] D. Saff and M. D. Ernst, “Mock object creation for test factoring,” in
Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. New York, NY, USA:
Association for Computing Machinery, 2004, pp. 49–51.

[31] S. Thummalapenta, J. de Halleux, N. Tillmann, and S. Wadsworth, “Dy-
gen: Automatic generation of high-coverage tests via mining gigabytes
of dynamic traces,” in Tests and Proofs. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 77–93.

[32] B. Pasternak, S. Tyszberowicz, and A. Yehudai, “Genutest: a unit test
and mock aspect generation tool,” International Journal on Software
Tools for Technology Transfer, vol. 11, no. 4, pp. 273–290, 2009.

[33] Google, “Processes and threads overview.” [Online]. Available:
https://developer.android.com/guide/components/processes-and-threads

[34] ——, “Application fundamentals.” [Online]. Available:
https://developer.android.com/guide/components/fundamentals

[35] A. Authors, “Artifact for action-based test carving for android apps.”
[Online]. Available: https://zenodo.org/record/7285409

[36] S. Faber, B. Dutheil, R. Winterhalter, and T. van der Lippe, “Mockito.”
[Online]. Available: https://site.mockito.org/

[37] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 4, pp. 451–490, 1991. [Online]. Available:
https://doi.org/10.1145/115372.115320

[38] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer, “Efficient unit
test case minimization,” in 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), November 5-9,
2007, Atlanta, Georgia, USA, R. E. K. Stirewalt, A. Egyed, and
B. Fischer, Eds. ACM, 2007, pp. 417–420. [Online]. Available:
https://doi.org/10.1145/1321631.1321698

[39] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First



Decade High Impact Papers. Armonk, NY, USA: IBM Corp., 2010,
p. 214–224.

[40] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis
framework,” in Proceedings of the 2007 international symposium on
Software testing and analysis, 2007, pp. 196–206.

[41] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5, 2005, pp. 3–4.

[42] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and
oracles,” IEEE Trans. Software Eng., vol. 38, no. 2, pp. 278–292, 2012.
[Online]. Available: https://doi.org/10.1109/TSE.2011.93

[43] E. Dinella, G. Ryan, T. Mytkowicz, and S. K. Lahiri, “TOGA:
A neural method for test oracle generation,” in 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 2130–2141.
[Online]. Available: https://doi.org/10.1145/3510003.3510141

[44] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk,
“On learning meaningful assert statements for unit test cases,” in
ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel and
D. Bae, Eds. ACM, 2020, pp. 1398–1409. [Online]. Available:
https://doi.org/10.1145/3377811.3380429

[45] GitHub, “Github.” [Online]. Available: https://github.com
[46] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests

in android apps,” in 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE, 2018, pp. 534–538.
[47] Google, “¡uses-sdk¿.” [Online]. Available:

https://developer.android.com/guide/topics/manifest/uses-sdk-element
[48] JaCoCo, “Jacoco.” [Online]. Available: https://www.jacoco.org
[49] G. Grano, F. Palomba, D. Di Nucci, A. De Lucia, and H. C. Gall,

“Scented since the beginning: On the diffuseness of test smells in
automatically generated test code,” Journal of Systems and Software,
vol. 156, pp. 312–327, 2019.

[50] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli, “To mock or not
to mock? an empirical study on mocking practices,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 402–412.

[51] A. Zeller, “Isolating cause-effect chains from computer programs,” in
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations
of Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2002, pp. 1–10.

[52] S. ur Rehman Khan, S. P. Lee, N. Javaid, and W. Abdul, “A systematic
review on test suite reduction: Approaches, experiment’s quality evalu-
ation, and guidelines,” IEEE Access, vol. 6, pp. 11 816–11 841, 2018.

[53] T. Bach, R. Pannemans, and A. Andrzejak, “Determining method-
call sequences for object creation in C++,” in Proceedings of the
13th IEEE International Conference on Software Testing, Validation
and Verification. Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers, 2020, pp. 108–119.


